{"title":"A NOTE ON THE TERNARY PURELY EXPONENTIAL DIOPHANTINE EQUATION fx+(f+g)y=gz","authors":"Yasutsugu Fujita, Maohua Le, Nobuhiro Terai","doi":"10.21099/tkbjm/20234701113","DOIUrl":null,"url":null,"abstract":"Let f, g be fixed coprime positive integers with min{f,g}>1. Recently, T. Miyazaki and N. Terai [11] conjectured that the equation fx+(f+g)y=gz has no positive integer solutions (x,y,z), except for certain known pairs (f,g). This is a problem that is far from being solved. Let r be an odd positive integer with r>1. In this paper, using Baker’s method with some known results on the generalized Lebesgue-Nagell equations, we prove that if f=2r and one of the following conditions is satisfied, then the above conjecture is true. (i) Either g or f+g has a divisor d with d≡5 or 7 (mod 8). (ii) f>22493glogg or 167748logg according to g≡1 or 3 (mod 8).","PeriodicalId":44321,"journal":{"name":"Tsukuba Journal of Mathematics","volume":"42 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsukuba Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21099/tkbjm/20234701113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let f, g be fixed coprime positive integers with min{f,g}>1. Recently, T. Miyazaki and N. Terai [11] conjectured that the equation fx+(f+g)y=gz has no positive integer solutions (x,y,z), except for certain known pairs (f,g). This is a problem that is far from being solved. Let r be an odd positive integer with r>1. In this paper, using Baker’s method with some known results on the generalized Lebesgue-Nagell equations, we prove that if f=2r and one of the following conditions is satisfied, then the above conjecture is true. (i) Either g or f+g has a divisor d with d≡5 or 7 (mod 8). (ii) f>22493glogg or 167748logg according to g≡1 or 3 (mod 8).