Identification in a binary choice panel data model with a predetermined covariate

Stéphane Bonhomme, Kevin Dano, Bryan S. Graham
{"title":"Identification in a binary choice panel data model with a predetermined covariate","authors":"Stéphane Bonhomme, Kevin Dano, Bryan S. Graham","doi":"10.1007/s13209-023-00290-2","DOIUrl":null,"url":null,"abstract":"Abstract We study identification in a binary choice panel data model with a single predetermined binary covariate (i.e., a covariate sequentially exogenous conditional on lagged outcomes and covariates). The choice model is indexed by a scalar parameter $$\\theta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>θ</mml:mi> </mml:math> , whereas the distribution of unit-specific heterogeneity, as well as the feedback process that maps lagged outcomes into future covariate realizations, is left unrestricted. We provide a simple condition under which $$\\theta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>θ</mml:mi> </mml:math> is never point-identified, no matter the number of time periods available. This condition is satisfied in most models, including the logit one. We also characterize the identified set of $$\\theta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>θ</mml:mi> </mml:math> and show how to compute it using linear programming techniques. While $$\\theta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>θ</mml:mi> </mml:math> is not generally point-identified, its identified set is informative in the examples we analyze numerically, suggesting that meaningful learning about $$\\theta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>θ</mml:mi> </mml:math> may be possible even in short panels with feedback. As a complement, we report calculations of identified sets for an average partial effect and find informative sets in this case as well.","PeriodicalId":76947,"journal":{"name":"Series paedopsychiatrica","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Series paedopsychiatrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13209-023-00290-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We study identification in a binary choice panel data model with a single predetermined binary covariate (i.e., a covariate sequentially exogenous conditional on lagged outcomes and covariates). The choice model is indexed by a scalar parameter $$\theta $$ θ , whereas the distribution of unit-specific heterogeneity, as well as the feedback process that maps lagged outcomes into future covariate realizations, is left unrestricted. We provide a simple condition under which $$\theta $$ θ is never point-identified, no matter the number of time periods available. This condition is satisfied in most models, including the logit one. We also characterize the identified set of $$\theta $$ θ and show how to compute it using linear programming techniques. While $$\theta $$ θ is not generally point-identified, its identified set is informative in the examples we analyze numerically, suggesting that meaningful learning about $$\theta $$ θ may be possible even in short panels with feedback. As a complement, we report calculations of identified sets for an average partial effect and find informative sets in this case as well.

Abstract Image

具有预定协变量的二元选择面板数据模型中的识别
我们研究了一个二元选择面板数据模型的识别,该模型具有单个预定的二元协变量(即,滞后结果和协变量的协变量顺序外生条件)。选择模型由标量参数$$\theta $$ θ索引,而单位特定异质性的分布,以及将滞后结果映射到未来协变量实现的反馈过程,则不受限制。我们提供了一个简单的条件,在该条件下,无论可用的时间段数量如何,$$\theta $$ θ都不会被点识别。大多数模型都满足这个条件,包括logit模型。我们还描述了$$\theta $$ θ的识别集,并展示了如何使用线性规划技术计算它。虽然$$\theta $$ θ通常不是点识别的,但其识别集在我们进行数值分析的示例中具有信息性,这表明即使在具有反馈的短面板中也可能有意义地学习$$\theta $$ θ。作为补充,我们报告了平均部分效应的识别集的计算,并在这种情况下找到信息集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信