{"title":"Thermal Effects on Dynamic Behavior of CFETR Vacuum Vessel","authors":"Songbo Han, Xiaojun Ni, Jian Ge, Jinxin Sun","doi":"10.1080/15361055.2023.2259749","DOIUrl":null,"url":null,"abstract":"AbstractThe vacuum vessel (VV) of the China Fusion Engineering Test Reactor (CFETR) was designed to withstand the variable structural loads resulting from dynamic excitation, such as seismic and plasma disruption. Modal analysis, a powerful tool, was used to evaluate the structural dynamic characteristics, such as frequency and mode shape. In addition, the CFETR VV has three different temperature conditions: room temperature (20°C), normal operation temperature (100°C), and baking temperature (200°C).In this paper, in order to investigate the influence of such different temperature conditions to the dynamic behavior of the VV, three independent finite element analysis with the same modal analysis method were performed. According to analysis results, there are obvious thermal effects on the dynamic behavior, such as nature frequency and mode shape, among the different temperature cases for the CFETR VV. Moreover, the results show that the natural frequency for each order decreases as the temperature increases, and the mode shape of the VV also changed with temperature.Keywords: CFETRvacuum vesselfinite elementmodal analysisthermal effect AcknowledgmentsThe authors are grateful to those who have given helpful advice. We would like to express our gratitude to the referees for information and suggestions that helped the quality of this paper significantly.Disclosure StatementNo potential conflict of interest was reported by the authors.Additional informationFundingThe research is supported by the National Key R&D Program of China (2017YFE0300500).","PeriodicalId":12626,"journal":{"name":"Fusion Science and Technology","volume":"31 7 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15361055.2023.2259749","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractThe vacuum vessel (VV) of the China Fusion Engineering Test Reactor (CFETR) was designed to withstand the variable structural loads resulting from dynamic excitation, such as seismic and plasma disruption. Modal analysis, a powerful tool, was used to evaluate the structural dynamic characteristics, such as frequency and mode shape. In addition, the CFETR VV has three different temperature conditions: room temperature (20°C), normal operation temperature (100°C), and baking temperature (200°C).In this paper, in order to investigate the influence of such different temperature conditions to the dynamic behavior of the VV, three independent finite element analysis with the same modal analysis method were performed. According to analysis results, there are obvious thermal effects on the dynamic behavior, such as nature frequency and mode shape, among the different temperature cases for the CFETR VV. Moreover, the results show that the natural frequency for each order decreases as the temperature increases, and the mode shape of the VV also changed with temperature.Keywords: CFETRvacuum vesselfinite elementmodal analysisthermal effect AcknowledgmentsThe authors are grateful to those who have given helpful advice. We would like to express our gratitude to the referees for information and suggestions that helped the quality of this paper significantly.Disclosure StatementNo potential conflict of interest was reported by the authors.Additional informationFundingThe research is supported by the National Key R&D Program of China (2017YFE0300500).
期刊介绍:
Fusion Science and Technology, a research journal of the American Nuclear Society, publishes original research and review papers on fusion plasma physics and plasma engineering, fusion nuclear technology and materials science, fusion plasma enabling science technology, fusion applications, and fusion design and systems studies.