{"title":"Treating detector systematics via a likelihood free inference method","authors":"L. Fischer, R. Naab, A. Trettin","doi":"10.1088/1748-0221/18/10/p10019","DOIUrl":null,"url":null,"abstract":"Abstract Estimating the impact of systematic uncertainties in particle physics experiments is challenging, especially since the detector response is unknown analytically in most situations and needs to be estimated through Monte Carlo (MC) simulations. Typically, detector property variations are parameterized in ways that implicitly assume a specific physics model, which can introduce biases on quantities measured by an analysis. In this paper, we present a method to recover a model-independent, event-wise estimation of the detector response variation by applying a likelihood-free inference method to a set of MC simulations representing discrete detector realizations. The method provides a re-weighting scheme for every event, which can be used to apply the effects of detector property variations fully decoupled from the assumed physics model. Using a toy MC example inspired by fixed-baseline neutrino oscillation experiments, we demonstrate the performance of our method. We show that it fully decouples the modeling of the detector response from the physics parameters to be measured in a MC forward-folding analysis.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"35 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/10/p10019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Estimating the impact of systematic uncertainties in particle physics experiments is challenging, especially since the detector response is unknown analytically in most situations and needs to be estimated through Monte Carlo (MC) simulations. Typically, detector property variations are parameterized in ways that implicitly assume a specific physics model, which can introduce biases on quantities measured by an analysis. In this paper, we present a method to recover a model-independent, event-wise estimation of the detector response variation by applying a likelihood-free inference method to a set of MC simulations representing discrete detector realizations. The method provides a re-weighting scheme for every event, which can be used to apply the effects of detector property variations fully decoupled from the assumed physics model. Using a toy MC example inspired by fixed-baseline neutrino oscillation experiments, we demonstrate the performance of our method. We show that it fully decouples the modeling of the detector response from the physics parameters to be measured in a MC forward-folding analysis.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.