{"title":"Gain layer degradation study after neutron and proton irradiations in Low Gain Avalanche Diodes","authors":"E. Currás Rivera, A. La Rosa, M. Moll, F. Zareef","doi":"10.1088/1748-0221/18/10/p10020","DOIUrl":null,"url":null,"abstract":"Abstract The high-luminosity upgrade of the ATLAS and CMS experiments includes dedicated sub-detectors to perform the time-stamping of minimum ionizing particles (MIPs). These detectors will be exposed up to fluences in the range of 1.5-2.5 × 10 15 n eq /cm 2 at the end of their lifetime and, Low Gain Avalanche Diode (LGAD) has been chosen as their baseline detection technology. To better understand the performance of LGAD detectors in these environments, a gain layer degradation study after neutron and proton irradiations up to a fluence of 1.5 × 10 15 n eq /cm 2 was performed. LGADs manufactured at Hamamatsu Photonics (HPK) and Centro Nacional de Microelectrónica (CNM-IMB) were chosen for this study and, a comparison in the gain layer degradation after exposure to reactor neutrons at the Jožef Stefan Institute (JSI) in Ljubjana and 24 GeV/c protons at the CERN-PS is presented here.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"147 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/10/p10020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The high-luminosity upgrade of the ATLAS and CMS experiments includes dedicated sub-detectors to perform the time-stamping of minimum ionizing particles (MIPs). These detectors will be exposed up to fluences in the range of 1.5-2.5 × 10 15 n eq /cm 2 at the end of their lifetime and, Low Gain Avalanche Diode (LGAD) has been chosen as their baseline detection technology. To better understand the performance of LGAD detectors in these environments, a gain layer degradation study after neutron and proton irradiations up to a fluence of 1.5 × 10 15 n eq /cm 2 was performed. LGADs manufactured at Hamamatsu Photonics (HPK) and Centro Nacional de Microelectrónica (CNM-IMB) were chosen for this study and, a comparison in the gain layer degradation after exposure to reactor neutrons at the Jožef Stefan Institute (JSI) in Ljubjana and 24 GeV/c protons at the CERN-PS is presented here.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.