{"title":"Pointwise attractors which are not strict","authors":"Magdalena Nowak","doi":"10.1016/j.indag.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>We deal with the finite family <span><math><mi>F</mi></math></span><span> of continuous maps on the Hausdorff space </span><span><math><mi>X</mi></math></span><span>. A nonempty compact subset </span><span><math><mi>A</mi></math></span><span> of such space is called a strict attractor if it has an open neighborhood </span><span><math><mi>U</mi></math></span> such that <span><math><mrow><mi>A</mi><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> for every nonempty compact <span><math><mrow><mi>S</mi><mo>⊂</mo><mi>U</mi></mrow></math></span><span>. Every strict attractor is a pointwise attractor, which means that the set </span><span><math><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><mi>X</mi><mo>;</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>A</mi><mo>}</mo></mrow></math></span> contains <span><math><mi>A</mi></math></span> in its interior.</p><p>We present a class of examples of pointwise attractors – from the finite set to the Sierpiński carpet – which are not strict when we add to the system one nonexpansive map.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 1","pages":"Pages 119-130"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000940","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We deal with the finite family of continuous maps on the Hausdorff space . A nonempty compact subset of such space is called a strict attractor if it has an open neighborhood such that for every nonempty compact . Every strict attractor is a pointwise attractor, which means that the set contains in its interior.
We present a class of examples of pointwise attractors – from the finite set to the Sierpiński carpet – which are not strict when we add to the system one nonexpansive map.
我们处理的是豪斯多夫空间 X 上连续映射的有限族 F。如果该空间的非空紧凑子集 A 有一个开放邻域 U,使得对于每个非空紧凑 S⊂U,A=limn→∞Fn(S),则该子集称为严格吸引子。每个严格吸引子都是点式吸引子,这意味着集合{x∈X;limn→∞Fn(x)=A}的内部包含A。我们提出了一类点式吸引子的例子--从有限集到西尔潘斯基地毯--当我们在系统中加入一个非膨胀映射时,这些吸引子就不是严格的了。
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.