Multi-index Sequential Monte Carlo Ratio Estimators for Bayesian Inverse problems

IF 2.5 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Ajay Jasra, Kody J. H. Law, Neil Walton, Shangda Yang
{"title":"Multi-index Sequential Monte Carlo Ratio Estimators for Bayesian Inverse problems","authors":"Ajay Jasra, Kody J. H. Law, Neil Walton, Shangda Yang","doi":"10.1007/s10208-023-09612-z","DOIUrl":null,"url":null,"abstract":"Abstract We consider the problem of estimating expectations with respect to a target distribution with an unknown normalising constant, and where even the un-normalised target needs to be approximated at finite resolution. This setting is ubiquitous across science and engineering applications, for example in the context of Bayesian inference where a physics-based model governed by an intractable partial differential equation (PDE) appears in the likelihood. A multi-index sequential Monte Carlo (MISMC) method is used to construct ratio estimators which provably enjoy the complexity improvements of multi-index Monte Carlo (MIMC) as well as the efficiency of sequential Monte Carlo (SMC) for inference. In particular, the proposed method provably achieves the canonical complexity of $$\\hbox {MSE}^{-1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mtext>MSE</mml:mtext> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> , while single-level methods require $$\\hbox {MSE}^{-\\xi }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mtext>MSE</mml:mtext> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>ξ</mml:mi> </mml:mrow> </mml:msup> </mml:math> for $$\\xi &gt;1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . This is illustrated on examples of Bayesian inverse problems with an elliptic PDE forward model in 1 and 2 spatial dimensions, where $$\\xi =5/4$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>5</mml:mn> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> and $$\\xi =3/2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , respectively. It is also illustrated on more challenging log-Gaussian process models, where single-level complexity is approximately $$\\xi =9/4$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>9</mml:mn> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> and multilevel Monte Carlo (or MIMC with an inappropriate index set) gives $$\\xi = 5/4 + \\omega $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>5</mml:mn> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ω</mml:mi> </mml:mrow> </mml:math> , for any $$\\omega &gt; 0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ω</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , whereas our method is again canonical. We also provide novel theoretical verification of the product-form convergence results which MIMC requires for Gaussian processes built in spaces of mixed regularity defined in the spectral domain, which facilitates acceleration with fast Fourier transform methods via a cumulant embedding strategy, and may be of independent interest in the context of spatial statistics and machine learning.","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10208-023-09612-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider the problem of estimating expectations with respect to a target distribution with an unknown normalising constant, and where even the un-normalised target needs to be approximated at finite resolution. This setting is ubiquitous across science and engineering applications, for example in the context of Bayesian inference where a physics-based model governed by an intractable partial differential equation (PDE) appears in the likelihood. A multi-index sequential Monte Carlo (MISMC) method is used to construct ratio estimators which provably enjoy the complexity improvements of multi-index Monte Carlo (MIMC) as well as the efficiency of sequential Monte Carlo (SMC) for inference. In particular, the proposed method provably achieves the canonical complexity of $$\hbox {MSE}^{-1}$$ MSE - 1 , while single-level methods require $$\hbox {MSE}^{-\xi }$$ MSE - ξ for $$\xi >1$$ ξ > 1 . This is illustrated on examples of Bayesian inverse problems with an elliptic PDE forward model in 1 and 2 spatial dimensions, where $$\xi =5/4$$ ξ = 5 / 4 and $$\xi =3/2$$ ξ = 3 / 2 , respectively. It is also illustrated on more challenging log-Gaussian process models, where single-level complexity is approximately $$\xi =9/4$$ ξ = 9 / 4 and multilevel Monte Carlo (or MIMC with an inappropriate index set) gives $$\xi = 5/4 + \omega $$ ξ = 5 / 4 + ω , for any $$\omega > 0$$ ω > 0 , whereas our method is again canonical. We also provide novel theoretical verification of the product-form convergence results which MIMC requires for Gaussian processes built in spaces of mixed regularity defined in the spectral domain, which facilitates acceleration with fast Fourier transform methods via a cumulant embedding strategy, and may be of independent interest in the context of spatial statistics and machine learning.

Abstract Image

贝叶斯反问题的多指标序列蒙特卡罗比率估计
摘要:我们考虑了对具有未知归一化常数的目标分布的期望估计问题,并且即使是未归一化的目标也需要在有限分辨率下进行近似。这种设置在科学和工程应用中无处不在,例如在贝叶斯推理的背景下,由难以处理的偏微分方程(PDE)控制的基于物理的模型出现在可能性中。采用多指标序贯蒙特卡罗(MISMC)方法构造比率估计器,证明该方法具有多指标蒙特卡罗(MIMC)方法的复杂性改进和序贯蒙特卡罗(SMC)方法的推理效率。特别地,本文提出的方法可证明地实现了$$\hbox {MSE}^{-1}$$ MSE - 1的正则复杂度,而单级方法对于$$\xi >1$$ ξ &gt需要$$\hbox {MSE}^{-\xi }$$ MSE - ξ;1。在1维和2维空间中,分别为$$\xi =5/4$$ ξ = 5 / 4和$$\xi =3/2$$ ξ = 3 / 2的椭圆PDE前向模型贝叶斯反问题的例子说明了这一点。它还说明了更具挑战性的对数高斯过程模型,其中单级复杂性约为$$\xi =9/4$$ ξ = 9 / 4,多级蒙特卡罗(或具有不适当索引集的MIMC)给出$$\xi = 5/4 + \omega $$ ξ = 5 / 4 + ω,对于任何$$\omega > 0$$ ω &gt;0,而我们的方法也是规范的。我们还提供了新的理论验证,MIMC需要在谱域中定义的混合规则空间中构建高斯过程的乘积形式收敛结果,这有助于通过累积嵌入策略使用快速傅立叶变换方法进行加速,并且可能在空间统计和机器学习的背景下具有独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信