Coupling conditions for linear hyperbolic relaxation systems in two-scale problems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Juntao Huang, Ruo Li, Yizhou Zhou
{"title":"Coupling conditions for linear hyperbolic relaxation systems in two-scale problems","authors":"Juntao Huang, Ruo Li, Yizhou Zhou","doi":"10.1090/mcom/3845","DOIUrl":null,"url":null,"abstract":"This work is concerned with coupling conditions for linear hyperbolic relaxation systems with multiple relaxation times. In the region with a small relaxation time, an equilibrium system can be used for computational efficiency. The key assumption is that the relaxation system satisfies Yong’s structural stability condition [J. Differential Equations, 155 (1999), pp. 89–132]. For the non-characteristic case, we derive a coupling condition at the interface to couple two systems in a domain decomposition setting. We prove the validity by the energy estimate and Laplace transform, which shows how the error of the domain decomposition method depends on the smaller relaxation time and the boundary-layer effects. In addition, we propose a discontinuous Galerkin (DG) numerical scheme for solving the interface problem with the derived coupling condition and prove the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> stability. We validate our analysis on the linearized Carleman model and the linearized Grad’s moment system and show the effectiveness of the DG scheme.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This work is concerned with coupling conditions for linear hyperbolic relaxation systems with multiple relaxation times. In the region with a small relaxation time, an equilibrium system can be used for computational efficiency. The key assumption is that the relaxation system satisfies Yong’s structural stability condition [J. Differential Equations, 155 (1999), pp. 89–132]. For the non-characteristic case, we derive a coupling condition at the interface to couple two systems in a domain decomposition setting. We prove the validity by the energy estimate and Laplace transform, which shows how the error of the domain decomposition method depends on the smaller relaxation time and the boundary-layer effects. In addition, we propose a discontinuous Galerkin (DG) numerical scheme for solving the interface problem with the derived coupling condition and prove the L 2 L^2 stability. We validate our analysis on the linearized Carleman model and the linearized Grad’s moment system and show the effectiveness of the DG scheme.
双尺度问题中线性双曲松弛系统的耦合条件
本文研究了具有多重松弛时间的线性双曲松弛系统的耦合条件。在松弛时间较小的区域,为了提高计算效率,可以采用平衡系统。关键假设是松弛系统满足Yong的结构稳定条件[J]。微分方程,155 (1999),pp. 89-132]。对于非特征情况,我们导出了在界面处耦合两个系统的耦合条件。通过能量估计和拉普拉斯变换证明了该方法的有效性,表明了区域分解方法的误差取决于较小的松弛时间和边界层效应。此外,我们提出了一个不连续Galerkin (DG)数值格式来求解该耦合条件下的界面问题,并证明了l2l ^2的稳定性。通过对线性化的Carleman模型和线性化的Grad力矩系统的分析,验证了DG方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信