The inclusion subsemimodule graph of a semimodule

Ahmed H Alwan, Zahraa A. Nema
{"title":"The inclusion subsemimodule graph of a semimodule","authors":"Ahmed H Alwan, Zahraa A. Nema","doi":"10.47974/jdmsc-1636","DOIUrl":null,"url":null,"abstract":"Let R be an abelian semiring with unity, U be an R-semimodule. The inclusion subsemimodule graph of U, indicated IS(U), is a graph with nodes that all non-trivial subsemimodules of U and two different nodes N and L are adjacent if and only if N ⊂ L or L ⊂ N. In this worke, proved that if U is subtractive semimodule then IS(U) is not connected if is a direct sum of two simple R-semimodules. Besides, it has been proved that IS(U) is a complete graph if and only if U is a uniserial semimodule. girth, diameter, chromatic and clique numbers of IS(U) have been studied. and only if U.","PeriodicalId":193977,"journal":{"name":"Journal of Discrete Mathematical Sciences and Cryptography","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Discrete Mathematical Sciences and Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jdmsc-1636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be an abelian semiring with unity, U be an R-semimodule. The inclusion subsemimodule graph of U, indicated IS(U), is a graph with nodes that all non-trivial subsemimodules of U and two different nodes N and L are adjacent if and only if N ⊂ L or L ⊂ N. In this worke, proved that if U is subtractive semimodule then IS(U) is not connected if is a direct sum of two simple R-semimodules. Besides, it has been proved that IS(U) is a complete graph if and only if U is a uniserial semimodule. girth, diameter, chromatic and clique numbers of IS(U) have been studied. and only if U.
半模的包含子半模图
设R是一个统一的阿贝尔半环,U是一个R半模。U的包含子半模图IS(U)是这样一个图:当且仅当N≠L或L≠N时,U的所有非平凡子半模与两个不同的节点N、L相邻。在本文中,证明了如果U是相减半模,则IS(U)是不连通的,如果U是两个简单r半模的直接和。此外,还证明了IS(U)是完全图当且仅当U是单列半模。研究了IS(U)的周长、直径、色度和团数。而且只有当美国。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信