Siti Noraini Sulaiman, Ajmal Hadi Ahmad Hishamuddin, Iza Sazanita Isa, Muhammad Khusairi Osman, Zainal Hisham Che Soh
{"title":"Classification of cervical cancer from Pap smear images: a convolutional neural network approach","authors":"Siti Noraini Sulaiman, Ajmal Hadi Ahmad Hishamuddin, Iza Sazanita Isa, Muhammad Khusairi Osman, Zainal Hisham Che Soh","doi":"10.1504/ijista.2023.133702","DOIUrl":null,"url":null,"abstract":"Cervical cancer is a significant global issue, with Pap smear tests being a common screening tool for precancerous stages. This study aims to develop a computer-aided diagnostics system that can classify precancerous cells from Pap smear images. The project employs convolutional neural networks (CNNs) trained using pre-processed images, adaptive fuzzy K-means (AFKM), and fuzzy C-means (FCM) to classify cervical cancer cell data as normal or abnormal. The datasets used in the project include normal, low-grade squamous intraepithelial lesion (LSIL), and high-grade squamous intraepithelial lesion (HSIL) categories. CNN1, CNN2, and CNN3 have been developed and CNN2 was chosen due to its highest accuracy of 87.71%. The CNN2 trained with AFKM outperformed other networks with an accuracy of 89.53%, precision of 0.870, recall of 0.870, specificity of 0.935, and F1-score of 0.870. This study demonstrates the potential of deep learning-based approaches for identifying and classifying cervical cell pre-cancerous stages.","PeriodicalId":38712,"journal":{"name":"International Journal of Intelligent Systems Technologies and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijista.2023.133702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Cervical cancer is a significant global issue, with Pap smear tests being a common screening tool for precancerous stages. This study aims to develop a computer-aided diagnostics system that can classify precancerous cells from Pap smear images. The project employs convolutional neural networks (CNNs) trained using pre-processed images, adaptive fuzzy K-means (AFKM), and fuzzy C-means (FCM) to classify cervical cancer cell data as normal or abnormal. The datasets used in the project include normal, low-grade squamous intraepithelial lesion (LSIL), and high-grade squamous intraepithelial lesion (HSIL) categories. CNN1, CNN2, and CNN3 have been developed and CNN2 was chosen due to its highest accuracy of 87.71%. The CNN2 trained with AFKM outperformed other networks with an accuracy of 89.53%, precision of 0.870, recall of 0.870, specificity of 0.935, and F1-score of 0.870. This study demonstrates the potential of deep learning-based approaches for identifying and classifying cervical cell pre-cancerous stages.
期刊介绍:
Intelligent systems refer broadly to computer embedded or controlled systems, machines and devices that possess a certain degree of intelligence. IJISTA, a peer-reviewed double-blind refereed journal, publishes original papers featuring innovative and practical technologies related to the design and development of intelligent systems. Its coverage also includes papers on intelligent systems applications in areas such as manufacturing, bioengineering, agriculture, services, home automation and appliances, medical robots and robotic rehabilitations, space exploration, etc. Topics covered include: -Robotics and mechatronics technologies- Artificial intelligence and knowledge based systems technologies- Real-time computing and its algorithms- Embedded systems technologies- Actuators and sensors- Mico/nano technologies- Sensing and multiple sensor fusion- Machine vision, image processing, pattern recognition and speech recognition and synthesis- Motion/force sensing and control- Intelligent product design, configuration and evaluation- Real time learning and machine behaviours- Fault detection, fault analysis and diagnostics- Digital communications and mobile computing- CAD and object oriented simulations.