Sharp well-posedness results of the Benjamin–Ono equation in $H^s (\mathbb{T}, \mathbb{R})$ and qualitative properties of its solutions

IF 4.9 1区 数学 Q1 MATHEMATICS
Patrick Gérard, Thomas Kappeler, Peter Topalov
{"title":"Sharp well-posedness results of the Benjamin–Ono equation in $H^s (\\mathbb{T}, \\mathbb{R})$ and qualitative properties of its solutions","authors":"Patrick Gérard, Thomas Kappeler, Peter Topalov","doi":"10.4310/acta.2023.v231.n1.a2","DOIUrl":null,"url":null,"abstract":"We prove that the Benjamin--Ono equation on the torus is globally in time well-posed in the Sobolev space $H^{s}(\\mathbb{T},\\mathbb{R})$ for any $s > - 1/2$ and ill-posed for $s \\le - 1/2$. Hence the critical Sobolev exponent $s_c=-1/2$ of the Benjamin--Ono equation is the threshold for well-posedness on the torus. The obtained solutions are almost periodic in time. Furthermore, we prove that the traveling wave solutions of the Benjamin-Ono equation on the torus are orbitally stable in $H^{s}(\\mathbb{T},\\mathbb{R})$ for any $ s > - 1/2$. Novel conservation laws and a nonlinear Fourier transform on $H^{s}(\\mathbb{T},\\mathbb{R})$ with $s > - 1/2$ are key ingredients into the proofs of these results.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/acta.2023.v231.n1.a2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We prove that the Benjamin--Ono equation on the torus is globally in time well-posed in the Sobolev space $H^{s}(\mathbb{T},\mathbb{R})$ for any $s > - 1/2$ and ill-posed for $s \le - 1/2$. Hence the critical Sobolev exponent $s_c=-1/2$ of the Benjamin--Ono equation is the threshold for well-posedness on the torus. The obtained solutions are almost periodic in time. Furthermore, we prove that the traveling wave solutions of the Benjamin-Ono equation on the torus are orbitally stable in $H^{s}(\mathbb{T},\mathbb{R})$ for any $ s > - 1/2$. Novel conservation laws and a nonlinear Fourier transform on $H^{s}(\mathbb{T},\mathbb{R})$ with $s > - 1/2$ are key ingredients into the proofs of these results.
$H^s (\mathbb{T}, \mathbb{R})$中Benjamin-Ono方程的清晰适定性结果及其解的定性性质
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mathematica
Acta Mathematica 数学-数学
CiteScore
6.00
自引率
2.70%
发文量
6
审稿时长
>12 weeks
期刊介绍: Publishes original research papers of the highest quality in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信