{"title":"Sharp well-posedness results of the Benjamin–Ono equation in $H^s (\\mathbb{T}, \\mathbb{R})$ and qualitative properties of its solutions","authors":"Patrick Gérard, Thomas Kappeler, Peter Topalov","doi":"10.4310/acta.2023.v231.n1.a2","DOIUrl":null,"url":null,"abstract":"We prove that the Benjamin--Ono equation on the torus is globally in time well-posed in the Sobolev space $H^{s}(\\mathbb{T},\\mathbb{R})$ for any $s > - 1/2$ and ill-posed for $s \\le - 1/2$. Hence the critical Sobolev exponent $s_c=-1/2$ of the Benjamin--Ono equation is the threshold for well-posedness on the torus. The obtained solutions are almost periodic in time. Furthermore, we prove that the traveling wave solutions of the Benjamin-Ono equation on the torus are orbitally stable in $H^{s}(\\mathbb{T},\\mathbb{R})$ for any $ s > - 1/2$. Novel conservation laws and a nonlinear Fourier transform on $H^{s}(\\mathbb{T},\\mathbb{R})$ with $s > - 1/2$ are key ingredients into the proofs of these results.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/acta.2023.v231.n1.a2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
We prove that the Benjamin--Ono equation on the torus is globally in time well-posed in the Sobolev space $H^{s}(\mathbb{T},\mathbb{R})$ for any $s > - 1/2$ and ill-posed for $s \le - 1/2$. Hence the critical Sobolev exponent $s_c=-1/2$ of the Benjamin--Ono equation is the threshold for well-posedness on the torus. The obtained solutions are almost periodic in time. Furthermore, we prove that the traveling wave solutions of the Benjamin-Ono equation on the torus are orbitally stable in $H^{s}(\mathbb{T},\mathbb{R})$ for any $ s > - 1/2$. Novel conservation laws and a nonlinear Fourier transform on $H^{s}(\mathbb{T},\mathbb{R})$ with $s > - 1/2$ are key ingredients into the proofs of these results.