Generalized k–step Jacobsthal numbers coding and decoding method

Arun Kumar Yadav, Manju Pruthi
{"title":"Generalized k–step Jacobsthal numbers coding and decoding method ","authors":"Arun Kumar Yadav, Manju Pruthi","doi":"10.47974/jdmsc-1726","DOIUrl":null,"url":null,"abstract":"In this article, we create a coding/decoding method utilizing the generalized k-step Jacobsthal numbers and the relation between the components of the code matrix and error detection and correction have been established for all value of k. The method’s accuracy is 93.33 percent for k = 2, the method’s accuracy is 99.80 percent for k = 3 and the method accuracy is 99.998 percent for n = 4. In general, the accuracy of the approach improves with each successively higher value of n. We give two examples of generalized k – step jacobsthal sequences via blocking algorithm and solve these illustrations using python.","PeriodicalId":193977,"journal":{"name":"Journal of Discrete Mathematical Sciences and Cryptography","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Discrete Mathematical Sciences and Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jdmsc-1726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we create a coding/decoding method utilizing the generalized k-step Jacobsthal numbers and the relation between the components of the code matrix and error detection and correction have been established for all value of k. The method’s accuracy is 93.33 percent for k = 2, the method’s accuracy is 99.80 percent for k = 3 and the method accuracy is 99.998 percent for n = 4. In general, the accuracy of the approach improves with each successively higher value of n. We give two examples of generalized k – step jacobsthal sequences via blocking algorithm and solve these illustrations using python.
广义k步jacobthal数编码与解码方法
在本文中,我们利用广义k步jacobthal数创建了一种编码/解码方法,并建立了所有k值的编码矩阵分量与错误检测和纠正之间的关系。对于k = 2,该方法的准确率为93.33%,对于k = 3,该方法的准确率为99.80%,对于n = 4,该方法的准确率为99.998%。一般来说,该方法的精度随着n的逐次增大而提高。我们通过块算法给出了两个广义k步jacobthal序列的例子,并使用python对这些例子进行了求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信