Analysis on responses of chaotic Izhikevich neurons to periodic forcing

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yota Tsukamoto, Honami Tsushima, Tohru Ikeguchi
{"title":"Analysis on responses of chaotic Izhikevich neurons to periodic forcing","authors":"Yota Tsukamoto, Honami Tsushima, Tohru Ikeguchi","doi":"10.1587/nolta.14.677","DOIUrl":null,"url":null,"abstract":"The Izhikevich neuron model can reproduce various types of neurons, including chaotic neurons, by utilizing appropriate parameter sets. This study analyzes the responses of a periodically forced Izhikevich neuron with chaotic parameters using three measures—the diversity index, the coefficient of variation, and the local variation—to quantify interspike intervals (ISIs). The evaluation of ISIs combining these three measures clarifies the differences in neuronal activities, but evaluation using an individual measure cannot. In addition, we analyzed the change in the stability of the equilibrium points caused by a periodic input on a phase plane. The results indicate that in electrophysiologically feasible parameter sets, the stability of equilibrium points plays a crucial role in determining the critical amplitude around which irregular activities transition to regular ones. Thus, the relationship between neural behavior and the period and amplitude of the input current is contingent upon the existence and stability of equilibrium points.","PeriodicalId":54110,"journal":{"name":"IEICE Nonlinear Theory and Its Applications","volume":"130 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Nonlinear Theory and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/nolta.14.677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Izhikevich neuron model can reproduce various types of neurons, including chaotic neurons, by utilizing appropriate parameter sets. This study analyzes the responses of a periodically forced Izhikevich neuron with chaotic parameters using three measures—the diversity index, the coefficient of variation, and the local variation—to quantify interspike intervals (ISIs). The evaluation of ISIs combining these three measures clarifies the differences in neuronal activities, but evaluation using an individual measure cannot. In addition, we analyzed the change in the stability of the equilibrium points caused by a periodic input on a phase plane. The results indicate that in electrophysiologically feasible parameter sets, the stability of equilibrium points plays a crucial role in determining the critical amplitude around which irregular activities transition to regular ones. Thus, the relationship between neural behavior and the period and amplitude of the input current is contingent upon the existence and stability of equilibrium points.
混沌Izhikevich神经元对周期强迫的响应分析
Izhikevich神经元模型可以通过使用适当的参数集来复制各种类型的神经元,包括混沌神经元。本研究使用多样性指数、变异系数和局部变异三种测量方法来量化脉冲间隔(ISIs),分析了具有混沌参数的周期性强迫Izhikevich神经元的响应。结合这三种测量方法对ISIs进行评估,可以澄清神经元活动的差异,但使用单个测量方法进行评估则不能。此外,我们还分析了相位平面上周期性输入引起的平衡点稳定性的变化。结果表明,在电生理可行参数集中,平衡点的稳定性对确定不规则活动向规则活动过渡的临界幅度起着至关重要的作用。因此,神经行为与输入电流的周期和振幅之间的关系取决于平衡点的存在和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEICE Nonlinear Theory and Its Applications
IEICE Nonlinear Theory and Its Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
20.00%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信