An Empirical Analysis of Trajectory Prediction Techniques for Motion Prediction in Waymo Dataset

Devansh Arora, Parul Arora, Ritika Wason
{"title":"An Empirical Analysis of Trajectory Prediction Techniques for Motion Prediction in Waymo Dataset","authors":"Devansh Arora, Parul Arora, Ritika Wason","doi":"10.17993/3ctecno.2023.v12n2e44.49-63","DOIUrl":null,"url":null,"abstract":"The Waymo is the prime and most varied autonomous driving dataset that improves and enhances itself every year. Motion Prediction is a considerable challenge in 2023. This manuscript analyses five considerable methods namely MTR-A, Wayformer, DenseTNT, Golfer and MultiPath++ for their technology applied. The analysis revealed that the Transformer network could achieve a state of the art trajectory prediction as well as scale to many workloads.","PeriodicalId":143630,"journal":{"name":"3C Tecnología","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C Tecnología","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctecno.2023.v12n2e44.49-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Waymo is the prime and most varied autonomous driving dataset that improves and enhances itself every year. Motion Prediction is a considerable challenge in 2023. This manuscript analyses five considerable methods namely MTR-A, Wayformer, DenseTNT, Golfer and MultiPath++ for their technology applied. The analysis revealed that the Transformer network could achieve a state of the art trajectory prediction as well as scale to many workloads.
基于Waymo数据集的运动预测轨迹预测技术实证分析
Waymo是最好的、最多样化的自动驾驶数据集,每年都在改进和增强自己。2023年,运动预测是一个相当大的挑战。本文分析了五种重要的方法,即MTR-A, Wayformer, DenseTNT, Golfer和MultiPath++的技术应用。分析表明,Transformer网络可以实现最先进的轨迹预测,并可扩展到许多工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信