A Mathematical Benchmark for Inductive Theorem Provers

Thibault Gauthier, Chad Brown, Mikoláš Janota, Josef Urban
{"title":"A Mathematical Benchmark for Inductive Theorem Provers","authors":"Thibault Gauthier, Chad Brown, Mikoláš Janota, Josef Urban","doi":"10.29007/jr72","DOIUrl":null,"url":null,"abstract":"We present a benchmark of 29687 problems derived from the On-Line Encyclopedia of Integer Sequences (OEIS). Each problem expresses the equivalence of two syntactically different programs generating the same OEIS sequence. Such programs were conjectured by a learning-guided synthesis system using a language with looping operators. The operators implement recursion, and thus many of the proofs require induction on natural numbers. The benchmark contains problems of varying difficulty from a wide area of mathematical domains. We believe that these characteristics will make it an effective judge for the progress of inductive theorem provers in this domain for years to come.","PeriodicalId":93549,"journal":{"name":"EPiC series in computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPiC series in computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/jr72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a benchmark of 29687 problems derived from the On-Line Encyclopedia of Integer Sequences (OEIS). Each problem expresses the equivalence of two syntactically different programs generating the same OEIS sequence. Such programs were conjectured by a learning-guided synthesis system using a language with looping operators. The operators implement recursion, and thus many of the proofs require induction on natural numbers. The benchmark contains problems of varying difficulty from a wide area of mathematical domains. We believe that these characteristics will make it an effective judge for the progress of inductive theorem provers in this domain for years to come.
归纳定理证明者的数学基准
我们提出了一个基于整数序列在线百科全书(OEIS)的29687个问题的基准。每个问题都表示生成相同OEIS序列的两个语法不同的程序的等价性。这样的程序是通过使用带有循环操作符的语言的学习引导综合系统推测出来的。运算符实现递归,因此许多证明需要对自然数进行归纳法。该基准包含来自广泛数学领域的不同难度的问题。我们相信,这些特征将使它成为未来几年归纳定理证明者在这一领域进展的有效判断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信