{"title":"Numerical Analysis of Flame Flashback and Instability in Cavity-Stabilized Supersonic Combustion","authors":"XIAO Yexin, JIN Tai","doi":"10.21656/1000-0887.440103","DOIUrl":null,"url":null,"abstract":"Aimed at the phenomenon of flame flashback and low-frequency combustion oscillation in the scramjet combustor with equal straight cross sections, 3D simulations were conducted, with the hybrid RANS/LES method (delayed detached-eddy simulation, DDES) for turbulence modeling and the partially stirred reactor (PaSR) for turbulence-reaction interactions. The obtained entire combustion oscillation period is consistent with the low-frequency combustion oscillation phenomenon observed in the experiment. The low-frequency combustion oscillation period can be divided into 3 stages: the cavity-holding flame, the flame flashback, and the flame blowout. By analysis of the reacting flow field in different stages of the low-frequency combustion oscillation cycle, the possible formation mechanism of low-frequency combustion oscillations was summarized. The results show that, there is no choking in the combustion chamber during the whole low-frequency combustion oscillation period. The pressure rise induced by shock interaction and the heat released by combustion are the key factors for the formation of low-frequency combustion oscillations in the combustion chamber.","PeriodicalId":8341,"journal":{"name":"应用数学和力学","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学和力学","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21656/1000-0887.440103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Aimed at the phenomenon of flame flashback and low-frequency combustion oscillation in the scramjet combustor with equal straight cross sections, 3D simulations were conducted, with the hybrid RANS/LES method (delayed detached-eddy simulation, DDES) for turbulence modeling and the partially stirred reactor (PaSR) for turbulence-reaction interactions. The obtained entire combustion oscillation period is consistent with the low-frequency combustion oscillation phenomenon observed in the experiment. The low-frequency combustion oscillation period can be divided into 3 stages: the cavity-holding flame, the flame flashback, and the flame blowout. By analysis of the reacting flow field in different stages of the low-frequency combustion oscillation cycle, the possible formation mechanism of low-frequency combustion oscillations was summarized. The results show that, there is no choking in the combustion chamber during the whole low-frequency combustion oscillation period. The pressure rise induced by shock interaction and the heat released by combustion are the key factors for the formation of low-frequency combustion oscillations in the combustion chamber.
期刊介绍:
Applied Mathematics and Mechanics was founded in 1980 by CHIEN Wei-zang, a celebrated Chinese scientist in mechanics and mathematics. The current editor in chief is Professor LU Tianjian from Nanjing University of Aeronautics and Astronautics. The Journal was a quarterly in the beginning, a bimonthly the next year, and then a monthly ever since 1985. It carries original research papers on mechanics, mathematical methods in mechanics and interdisciplinary mechanics based on artificial intelligence mathematics. It also strengthens attention to mechanical issues in interdisciplinary fields such as mechanics and information networks, system control, life sciences, ecological sciences, new energy, and new materials, making due contributions to promoting the development of new productive forces.