Some properties defined by relative versions of star-covering properties II

IF 0.6 Q3 MATHEMATICS
Maddalena Bonanzinga, Davide Giacopello, Fortunato Maesano
{"title":"Some properties defined by relative versions of star-covering properties II","authors":"Maddalena Bonanzinga, Davide Giacopello, Fortunato Maesano","doi":"10.4995/agt.2023.17926","DOIUrl":null,"url":null,"abstract":"In this paper we consider some recent relative versions of Menger property called set strongly star Menger and set star Menger properties and the corresponding Hurewicz-type properties. In particular, using [2], we \"easily\" prove that the set strong star Menger and set strong star Hurewicz properties are between countable compactness and the property of having countable extent. Also we show that the extent of a regular set star Menger or a set star Hurewicz space cannot exceed c. Moreover, we construct (1) a consistent example of a set star Menger (set star Hurewicz) space which is not set strongly star Menger (set strongly star Hurewicz) and show that (2) the product of a set star Menger (set star Hurewicz) space with a compact space need not be set star Menger (set star Hurewicz). In particular, (1) and (2) answer some questions posed by Kočinac, Konca and Singh in [17] and [23].","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"49 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2023.17926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we consider some recent relative versions of Menger property called set strongly star Menger and set star Menger properties and the corresponding Hurewicz-type properties. In particular, using [2], we "easily" prove that the set strong star Menger and set strong star Hurewicz properties are between countable compactness and the property of having countable extent. Also we show that the extent of a regular set star Menger or a set star Hurewicz space cannot exceed c. Moreover, we construct (1) a consistent example of a set star Menger (set star Hurewicz) space which is not set strongly star Menger (set strongly star Hurewicz) and show that (2) the product of a set star Menger (set star Hurewicz) space with a compact space need not be set star Menger (set star Hurewicz). In particular, (1) and (2) answer some questions posed by Kočinac, Konca and Singh in [17] and [23].
由恒星覆盖性质的相对版本定义的一些性质II
本文考虑了Menger性质的一些最新的相对版本,即集合强星Menger和集合星Menger性质以及相应的hurewicz型性质。特别地,利用[2],我们“轻松地”证明了集合强星Menger和集合强星Hurewicz性质介于可数紧性和具有可数范围的性质之间。此外,我们构造了(1)非集强星门格(集强星Hurewicz)的集星门格(集星Hurewicz)空间的一致例子,并证明了(2)集星门格(集星Hurewicz)空间与紧化空间的乘积不必是集星门格(集星Hurewicz)。特别是,(1)和(2)回答了ko inac、Konca和Singh在[17]和[23]中提出的一些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
38
审稿时长
15 weeks
期刊介绍: The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信