Implementasi Aplikasi Sentimen Pada Data Twitter Jelang Pemilu 2024

Choirul Humam, Arif Dwi Laksito
{"title":"Implementasi Aplikasi Sentimen Pada Data Twitter Jelang Pemilu 2024","authors":"Choirul Humam, Arif Dwi Laksito","doi":"10.30591/jpit.v8i2.5051","DOIUrl":null,"url":null,"abstract":"Elections are one of the most important democratic processes, giving citizens the right to choose their leaders. In today's digital era, social media is an increasingly important information source influencing public perception. Twitter has been a social media from the past until now that still exists in finding information. Tweets are one of the most frequently used services to express opinions or opinions to the public. Sentiment analysis as an application of Natural Language Processing (NLP) is helpful in understanding public opinion towards prospective leaders and issues discussed during election campaigns. The motivation for this study is to conduct text classification using a deep learning model called LSTM and to compare the use of oversampling and non-oversampling methods. This research started by collecting datasets from Twitter, labelling, pre-processing, creating and evaluating the model, and implementing it into the web application. The experiment showed that the random oversampling technique gets more significant accuracy than non-oversampling. Random oversampling produces an accuracy of 0.82 at epoch 25, while non-oversampling reaches an accuracy of 0.61 at epoch 50","PeriodicalId":53375,"journal":{"name":"Jurnal Informatika Jurnal Pengembangan IT","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Jurnal Pengembangan IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30591/jpit.v8i2.5051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Elections are one of the most important democratic processes, giving citizens the right to choose their leaders. In today's digital era, social media is an increasingly important information source influencing public perception. Twitter has been a social media from the past until now that still exists in finding information. Tweets are one of the most frequently used services to express opinions or opinions to the public. Sentiment analysis as an application of Natural Language Processing (NLP) is helpful in understanding public opinion towards prospective leaders and issues discussed during election campaigns. The motivation for this study is to conduct text classification using a deep learning model called LSTM and to compare the use of oversampling and non-oversampling methods. This research started by collecting datasets from Twitter, labelling, pre-processing, creating and evaluating the model, and implementing it into the web application. The experiment showed that the random oversampling technique gets more significant accuracy than non-oversampling. Random oversampling produces an accuracy of 0.82 at epoch 25, while non-oversampling reaches an accuracy of 0.61 at epoch 50
在 2024 年大选前利用推特数据实施情感应用程序
选举是最重要的民主程序之一,赋予公民选择领导人的权利。在当今的数字时代,社交媒体是影响公众认知的越来越重要的信息来源。从过去到现在,Twitter一直是一个社交媒体,它仍然存在于寻找信息。推特是最常用的向公众表达意见或意见的服务之一。情感分析作为自然语言处理(NLP)的一种应用,有助于理解公众对未来领导人和竞选活动中讨论的问题的看法。本研究的动机是使用称为LSTM的深度学习模型进行文本分类,并比较过采样和非过采样方法的使用。这项研究首先从Twitter收集数据集,标记,预处理,创建和评估模型,并将其实现到web应用程序中。实验表明,随机过采样技术比非过采样技术具有更显著的精度。随机过采样在历元25时产生0.82的精度,而非过采样在历元50时达到0.61的精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信