Multiple recurrence and popular differences for polynomial patterns in rings of integers

IF 0.6 3区 数学 Q3 MATHEMATICS
ETHAN ACKELSBERG, VITALY BERGELSON
{"title":"Multiple recurrence and popular differences for polynomial patterns in rings of integers","authors":"ETHAN ACKELSBERG, VITALY BERGELSON","doi":"10.1017/s030500412300049x","DOIUrl":null,"url":null,"abstract":"Abstract We demonstrate that the phenomenon of popular differences (aka the phenomenon of large intersections) holds for natural families of polynomial patterns in rings of integers of number fields. If K is a number field with ring of integers $\\mathcal{O}_K$ and $E \\subseteq \\mathcal{O}_K$ has positive upper Banach density $d^*(E) = \\delta > 0$ , we show, inter alia : (1) if $p(x) \\in K[x]$ is an intersective polynomial (i.e., p has a root modulo m for every $m \\in \\mathcal{O}_K$ ) with $p(\\mathcal{O}_K) \\subseteq \\mathcal{O}_K$ and $r, s \\in \\mathcal{O}_K$ are distinct and nonzero, then for any $\\varepsilon > 0$ , there is a syndetic set $S \\subseteq \\mathcal{O}_K$ such that for any $n \\in S$ , \\begin{align*} d^* \\left( \\left\\{ x \\in \\mathcal{O}_K \\;:\\; \\{x, x + rp(n), x + sp(n)\\} \\subseteq E \\right\\} \\right) > \\delta^3 - \\varepsilon. \\end{align*} Moreover, if ${s}/{r} \\in \\mathbb{Q}$ , then there are syndetically many $n \\in \\mathcal{O}_K$ such that \\begin{align*} d^* \\left( \\left\\{ x \\in \\mathcal{O}_K \\;:\\; \\{x, x + rp(n), x + sp(n), x + (r+s)p(n)\\} \\subseteq E \\right\\} \\right) > \\delta^4 - \\varepsilon; \\end{align*} (2) if $\\{p_1, \\dots, p_k\\} \\subseteq K[x]$ is a jointly intersective family (i.e., $p_1, \\dots, p_k$ have a common root modulo m for every $m \\in \\mathcal{O}_K$ ) of linearly independent polynomials with $p_i(\\mathcal{O}_K) \\subseteq \\mathcal{O}_K$ , then there are syndetically many $n \\in \\mathcal{O}_K$ such that \\begin{align*} d^* \\left( \\left\\{ x \\in \\mathcal{O}_K \\;:\\; \\{x, x + p_1(n), \\dots, x + p_k(n)\\} \\subseteq E \\right\\} \\right) > \\delta^{k+1} - \\varepsilon. \\end{align*} These two results generalise and extend previous work of Frantzikinakis and Kra [ 21 ] and Franztikinakis [ 19 ] on polynomial configurations in $\\mathbb{Z}$ and build upon recent work of the authors and Best [ 2 ] on linear patterns in general abelian groups. The above combinatorial results follow from multiple recurrence results in ergodic theory via a version of Furstenberg’s correspondence principle. The ergodic-theoretic recurrence theorems require a sharpening of existing tools for handling polynomial multiple ergodic averages. A key advancement made in this paper is a new result on the equidistribution of polynomial orbits in nilmanifolds, which can be seen as a far-reaching generalisation of Weyl’s equidistribution theorem for polynomials of several variables: (3) let $d, k, l \\in \\mathbb{N}$ . Let $(X, \\mathcal{B}, \\mu, T_1, \\dots, T_l)$ be an ergodic, connected $\\mathbb{Z}^l$ -nilsystem. Let $\\{p_{i,j} \\;:\\; 1 \\le i \\le k, 1 \\le j \\le l\\} \\subseteq \\mathbb{Q}[x_1, \\dots, x_d]$ be a family of polynomials such that $p_{i,j}\\left( \\mathbb{Z}^d \\right) \\subseteq \\mathbb{Z}$ and $\\{1\\} \\cup \\{p_{i,j}\\}$ is linearly independent over $\\mathbb{Q}$ . Then the $\\mathbb{Z}^d$ -sequence $\\left( \\prod_{j=1}^l{T_j^{p_{1,j}(n)}}x, \\dots, \\prod_{j=1}^l{T_j^{p_{k,j}(n)}}x \\right)_{n \\in \\mathbb{Z}^d}$ is well-distributed in $X^k$ for every x in a co-meager set of full measure.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"304 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s030500412300049x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We demonstrate that the phenomenon of popular differences (aka the phenomenon of large intersections) holds for natural families of polynomial patterns in rings of integers of number fields. If K is a number field with ring of integers $\mathcal{O}_K$ and $E \subseteq \mathcal{O}_K$ has positive upper Banach density $d^*(E) = \delta > 0$ , we show, inter alia : (1) if $p(x) \in K[x]$ is an intersective polynomial (i.e., p has a root modulo m for every $m \in \mathcal{O}_K$ ) with $p(\mathcal{O}_K) \subseteq \mathcal{O}_K$ and $r, s \in \mathcal{O}_K$ are distinct and nonzero, then for any $\varepsilon > 0$ , there is a syndetic set $S \subseteq \mathcal{O}_K$ such that for any $n \in S$ , \begin{align*} d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + rp(n), x + sp(n)\} \subseteq E \right\} \right) > \delta^3 - \varepsilon. \end{align*} Moreover, if ${s}/{r} \in \mathbb{Q}$ , then there are syndetically many $n \in \mathcal{O}_K$ such that \begin{align*} d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + rp(n), x + sp(n), x + (r+s)p(n)\} \subseteq E \right\} \right) > \delta^4 - \varepsilon; \end{align*} (2) if $\{p_1, \dots, p_k\} \subseteq K[x]$ is a jointly intersective family (i.e., $p_1, \dots, p_k$ have a common root modulo m for every $m \in \mathcal{O}_K$ ) of linearly independent polynomials with $p_i(\mathcal{O}_K) \subseteq \mathcal{O}_K$ , then there are syndetically many $n \in \mathcal{O}_K$ such that \begin{align*} d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + p_1(n), \dots, x + p_k(n)\} \subseteq E \right\} \right) > \delta^{k+1} - \varepsilon. \end{align*} These two results generalise and extend previous work of Frantzikinakis and Kra [ 21 ] and Franztikinakis [ 19 ] on polynomial configurations in $\mathbb{Z}$ and build upon recent work of the authors and Best [ 2 ] on linear patterns in general abelian groups. The above combinatorial results follow from multiple recurrence results in ergodic theory via a version of Furstenberg’s correspondence principle. The ergodic-theoretic recurrence theorems require a sharpening of existing tools for handling polynomial multiple ergodic averages. A key advancement made in this paper is a new result on the equidistribution of polynomial orbits in nilmanifolds, which can be seen as a far-reaching generalisation of Weyl’s equidistribution theorem for polynomials of several variables: (3) let $d, k, l \in \mathbb{N}$ . Let $(X, \mathcal{B}, \mu, T_1, \dots, T_l)$ be an ergodic, connected $\mathbb{Z}^l$ -nilsystem. Let $\{p_{i,j} \;:\; 1 \le i \le k, 1 \le j \le l\} \subseteq \mathbb{Q}[x_1, \dots, x_d]$ be a family of polynomials such that $p_{i,j}\left( \mathbb{Z}^d \right) \subseteq \mathbb{Z}$ and $\{1\} \cup \{p_{i,j}\}$ is linearly independent over $\mathbb{Q}$ . Then the $\mathbb{Z}^d$ -sequence $\left( \prod_{j=1}^l{T_j^{p_{1,j}(n)}}x, \dots, \prod_{j=1}^l{T_j^{p_{k,j}(n)}}x \right)_{n \in \mathbb{Z}^d}$ is well-distributed in $X^k$ for every x in a co-meager set of full measure.
整数环中多项式模式的多次递归和普遍差异
摘要证明了数域整数环上多项式模式自然族的普遍差异现象(即大交集现象)。如果K是一个带整数环的数字域 $\mathcal{O}_K$ 和 $E \subseteq \mathcal{O}_K$ 上巴拿赫密度是正的 $d^*(E) = \delta > 0$ ,我们表明,除其他外:(1)如果 $p(x) \in K[x]$ 是否一个相交多项式(即p对每一个 $m \in \mathcal{O}_K$ )与 $p(\mathcal{O}_K) \subseteq \mathcal{O}_K$ 和 $r, s \in \mathcal{O}_K$ 都是不同且非零的 $\varepsilon > 0$ ,有一个综合集 $S \subseteq \mathcal{O}_K$ 这样对于任何 $n \in S$ , \begin{align*} d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + rp(n), x + sp(n)\} \subseteq E \right\} \right) > \delta^3 - \varepsilon. \end{align*} 此外,如果 ${s}/{r} \in \mathbb{Q}$ ,那么总共就有很多 $n \in \mathcal{O}_K$ 这样 \begin{align*} d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + rp(n), x + sp(n), x + (r+s)p(n)\} \subseteq E \right\} \right) > \delta^4 - \varepsilon; \end{align*} (2)如果 $\{p_1, \dots, p_k\} \subseteq K[x]$ 是一个共同相交的家族(即 $p_1, \dots, p_k$ 对m取模有公根吗 $m \in \mathcal{O}_K$ 的线性无关多项式 $p_i(\mathcal{O}_K) \subseteq \mathcal{O}_K$ ,那么总共就有很多 $n \in \mathcal{O}_K$ 这样 \begin{align*} d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + p_1(n), \dots, x + p_k(n)\} \subseteq E \right\} \right) > \delta^{k+1} - \varepsilon. \end{align*} 这两个结果推广和扩展了Frantzikinakis和Kra[21]和Franztikinakis[19]关于多项式构型的研究 $\mathbb{Z}$ 并以作者和Best[2]最近关于一般阿贝尔群的线性模式的工作为基础。上述组合结果是由遍历理论中的多次递归结果通过弗斯滕伯格对应原理的一个版本推导出来的。遍历理论递归定理要求对现有的处理多项式多次遍历平均的工具进行改进。本文的一个关键进展是关于零流形中多项式轨道的均衡分布的一个新结果,这可以看作是Weyl的多变量多项式均衡分布定理的一个深远推广 $d, k, l \in \mathbb{N}$ . 让 $(X, \mathcal{B}, \mu, T_1, \dots, T_l)$ 做一个通情达理的人 $\mathbb{Z}^l$ -零系统。让 $\{p_{i,j} \;:\; 1 \le i \le k, 1 \le j \le l\} \subseteq \mathbb{Q}[x_1, \dots, x_d]$ 是一个多项式族,这样 $p_{i,j}\left( \mathbb{Z}^d \right) \subseteq \mathbb{Z}$ 和 $\{1\} \cup \{p_{i,j}\}$ 是线性无关的 $\mathbb{Q}$ . 然后是 $\mathbb{Z}^d$ -序列 $\left( \prod_{j=1}^l{T_j^{p_{1,j}(n)}}x, \dots, \prod_{j=1}^l{T_j^{p_{k,j}(n)}}x \right)_{n \in \mathbb{Z}^d}$ 分布在 $X^k$ 对于全测度集合中的每一个x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信