Dissecting power of intersection of two context-free languages

IF 0.7 4区 数学
Josef Rukavicka
{"title":"Dissecting power of intersection of two context-free languages","authors":"Josef Rukavicka","doi":"10.46298/dmtcs.9063","DOIUrl":null,"url":null,"abstract":"We say that a language $L$ is \\emph{constantly growing} if there is a constant $c$ such that for every word $u\\in L$ there is a word $v\\in L$ with $\\vert u\\vert<\\vert v\\vert\\leq c+\\vert u\\vert$. We say that a language $L$ is \\emph{geometrically growing} if there is a constant $c$ such that for every word $u\\in L$ there is a word $v\\in L$ with $\\vert u\\vert<\\vert v\\vert\\leq c\\vert u\\vert$. Given two infinite languages $L_1,L_2$, we say that $L_1$ \\emph{dissects} $L_2$ if $\\vert L_2\\setminus L_1\\vert=\\infty$ and $\\vert L_1\\cap L_2\\vert=\\infty$. In 2013, it was shown that for every constantly growing language $L$ there is a regular language $R$ such that $R$ dissects $L$. In the current article we show how to dissect a geometrically growing language by a homomorphic image of intersection of two context-free languages. Consider three alphabets $\\Gamma$, $\\Sigma$, and $\\Theta$ such that $\\vert \\Sigma\\vert=1$ and $\\vert \\Theta\\vert=4$. We prove that there are context-free languages $M_1,M_2\\subseteq \\Theta^*$, an erasing alphabetical homomorphism $\\pi:\\Theta^*\\rightarrow \\Sigma^*$, and a nonerasing alphabetical homomorphism $\\varphi : \\Gamma^*\\rightarrow \\Sigma^*$ such that: If $L\\subseteq \\Gamma^*$ is a geometrically growing language then there is a regular language $R\\subseteq \\Theta^*$ such that $\\varphi^{-1}\\left(\\pi\\left(R\\cap M_1\\cap M_2\\right)\\right)$ dissects the language $L$.","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":"142 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.9063","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We say that a language $L$ is \emph{constantly growing} if there is a constant $c$ such that for every word $u\in L$ there is a word $v\in L$ with $\vert u\vert<\vert v\vert\leq c+\vert u\vert$. We say that a language $L$ is \emph{geometrically growing} if there is a constant $c$ such that for every word $u\in L$ there is a word $v\in L$ with $\vert u\vert<\vert v\vert\leq c\vert u\vert$. Given two infinite languages $L_1,L_2$, we say that $L_1$ \emph{dissects} $L_2$ if $\vert L_2\setminus L_1\vert=\infty$ and $\vert L_1\cap L_2\vert=\infty$. In 2013, it was shown that for every constantly growing language $L$ there is a regular language $R$ such that $R$ dissects $L$. In the current article we show how to dissect a geometrically growing language by a homomorphic image of intersection of two context-free languages. Consider three alphabets $\Gamma$, $\Sigma$, and $\Theta$ such that $\vert \Sigma\vert=1$ and $\vert \Theta\vert=4$. We prove that there are context-free languages $M_1,M_2\subseteq \Theta^*$, an erasing alphabetical homomorphism $\pi:\Theta^*\rightarrow \Sigma^*$, and a nonerasing alphabetical homomorphism $\varphi : \Gamma^*\rightarrow \Sigma^*$ such that: If $L\subseteq \Gamma^*$ is a geometrically growing language then there is a regular language $R\subseteq \Theta^*$ such that $\varphi^{-1}\left(\pi\left(R\cap M_1\cap M_2\right)\right)$ dissects the language $L$.
两种上下文无关语言交集的剖析能力
我们说一门语言$L$是\emph{不断发展}的,如果有一个常数$c$,使得每个单词$u\in L$后面都有一个单词$v\in L$和$\vert u\vert<\vert v\vert\leq c+\vert u\vert$。如果存在一个常数$c$,使得对于每个单词$u\in L$都有一个单词$v\in L$与$\vert u\vert<\vert v\vert\leq c\vert u\vert$对应,我们就说一种语言$L$\emph{呈几何级数增长}。给定两种无限语言$L_1,L_2$,我们说$L_1$将$L_2$\emph{分解}为$\vert L_2\setminus L_1\vert=\infty$和$\vert L_1\cap L_2\vert=\infty$。2013年,研究表明,对于每一种不断发展的语言$L$,都有一种常规的语言$R$, $R$可以分解$L$。在本文中,我们将展示如何通过两种无关上下文的语言的交集的同态象来解剖几何增长的语言。考虑三个字母$\Gamma$、$\Sigma$和$\Theta$,即$\vert \Sigma\vert=1$和$\vert \Theta\vert=4$。我们证明存在与环境无关的语言$M_1,M_2\subseteq \Theta^*$、可擦除的字母同态$\pi:\Theta^*\rightarrow \Sigma^*$和不可擦除的字母同态$\varphi : \Gamma^*\rightarrow \Sigma^*$,从而:如果$L\subseteq \Gamma^*$是一个几何增长的语言,那么存在一个正则语言$R\subseteq \Theta^*$,使得$\varphi^{-1}\left(\pi\left(R\cap M_1\cap M_2\right)\right)$解析语言$L$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
14.30%
发文量
39
期刊介绍: DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network. Sections of DMTCS Analysis of Algorithms Automata, Logic and Semantics Combinatorics Discrete Algorithms Distributed Computing and Networking Graph Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信