Galois lines for a canonical curve of genus 4, II: Skew cyclic lines

Jiryo Komeda, Takeshi Takahashi
{"title":"Galois lines for a canonical curve of genus 4, II: Skew cyclic lines","authors":"Jiryo Komeda, Takeshi Takahashi","doi":"10.4171/rsmup/141","DOIUrl":null,"url":null,"abstract":"Let $C \\subset \\mathbb{P}^3$ be a canonical curve of genus $4$ over an algebraically closed field $k$ of characteristic zero. For a line $l$, we consider the projection $\\pi\\_l\\colon C \\rightarrow \\mathbb{P}^1$ with center $l$ and the extension of the function fields $\\pi^\\_l\\colon k(\\mathbb{P}^1) \\hookrightarrow k(C)$. A line $l$ is referred to as a cyclic line if the extension $k(C)/\\pi\\_l^(k(\\mathbb{P}^1))$ is cyclic. A line $l \\subset \\mathbb{P}^3$ is said to be skew if $C \\cap l = \\emptyset$. We prove that the number of skew cyclic lines is equal to $0,1,3$ or $9$. We determine curves that have nine skew cyclic lines.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $C \subset \mathbb{P}^3$ be a canonical curve of genus $4$ over an algebraically closed field $k$ of characteristic zero. For a line $l$, we consider the projection $\pi\_l\colon C \rightarrow \mathbb{P}^1$ with center $l$ and the extension of the function fields $\pi^\_l\colon k(\mathbb{P}^1) \hookrightarrow k(C)$. A line $l$ is referred to as a cyclic line if the extension $k(C)/\pi\_l^(k(\mathbb{P}^1))$ is cyclic. A line $l \subset \mathbb{P}^3$ is said to be skew if $C \cap l = \emptyset$. We prove that the number of skew cyclic lines is equal to $0,1,3$ or $9$. We determine curves that have nine skew cyclic lines.
一类4属正则曲线的伽罗瓦线:斜循环线
设$C \subset \mathbb{P}^3$为特征为零的代数闭域$k$上的属$4$的正则曲线。对于直线$l$,我们考虑以$l$为中心的投影$\pi\_l\colon C \rightarrow \mathbb{P}^1$和函数域$\pi^\_l\colon k(\mathbb{P}^1) \hookrightarrow k(C)$的扩展。如果扩展$k(C)/\pi\_l^(k(\mathbb{P}^1))$是循环的,则将行$l$称为循环线。如果是$C \cap l = \emptyset$,就说一条线$l \subset \mathbb{P}^3$是倾斜的。证明了歪斜环状线的个数等于$0,1,3$或$9$。我们确定有九条歪斜循环线的曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信