Galois lines for a canonical curve of genus 4, I: Non-skew cyclic lines

Jiryo Komeda, Takeshi Takahashi
{"title":"Galois lines for a canonical curve of genus 4, I: Non-skew cyclic lines","authors":"Jiryo Komeda, Takeshi Takahashi","doi":"10.4171/rsmup/140","DOIUrl":null,"url":null,"abstract":"Let $C \\subset \\mathbb{P}^3$ be a canonical curve of genus $4$ over an algebraically closed field $k$ of characteristic $0$. For a line $l \\subset \\mathbb{P}^3$, we consider the projection $\\pi\\_l\\colon C \\rightarrow \\mathbb{P}^1$ with center $l$ and the extension of the function fields $\\pi\\_l^\\ast\\colon k(\\mathbb{P}^1) \\hookrightarrow k(C)$. A line $l$ is assumed to be cyclic for $C$, if the extension $k(C)/\\pi\\_l^\\*(k(\\mathbb{P}^1))$ is cyclic. A line $l$ is assumed to be non-skew, if $C \\cap l \\ne \\emptyset$, i.e., $\\deg \\pi\\_l < \\deg C = 6$. We investigate the number of non-skew cyclic lines for $C$. As main results, we explicitly give the equation of $C$ in the particular case in which $C$ has two cyclic trigonal morphisms; we prove that the number of cyclic lines with $\\deg \\pi\\_l =4$ is at most\\~$1$, and the number of cyclic lines with $\\deg \\pi\\_l =5$ is at most\\~$1$.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $C \subset \mathbb{P}^3$ be a canonical curve of genus $4$ over an algebraically closed field $k$ of characteristic $0$. For a line $l \subset \mathbb{P}^3$, we consider the projection $\pi\_l\colon C \rightarrow \mathbb{P}^1$ with center $l$ and the extension of the function fields $\pi\_l^\ast\colon k(\mathbb{P}^1) \hookrightarrow k(C)$. A line $l$ is assumed to be cyclic for $C$, if the extension $k(C)/\pi\_l^\*(k(\mathbb{P}^1))$ is cyclic. A line $l$ is assumed to be non-skew, if $C \cap l \ne \emptyset$, i.e., $\deg \pi\_l < \deg C = 6$. We investigate the number of non-skew cyclic lines for $C$. As main results, we explicitly give the equation of $C$ in the particular case in which $C$ has two cyclic trigonal morphisms; we prove that the number of cyclic lines with $\deg \pi\_l =4$ is at most\~$1$, and the number of cyclic lines with $\deg \pi\_l =5$ is at most\~$1$.
属4,I的正则曲线的伽罗瓦线:非斜循环线
设$C \subset \mathbb{P}^3$为特征为$0$的代数闭域$k$上的属$4$的正则曲线。对于直线$l \subset \mathbb{P}^3$,我们考虑以$l$为中心的投影$\pi\_l\colon C \rightarrow \mathbb{P}^1$和函数域$\pi\_l^\ast\colon k(\mathbb{P}^1) \hookrightarrow k(C)$的扩展。如果扩展名$k(C)/\pi\_l^\*(k(\mathbb{P}^1))$是循环的,则假定$C$的行$l$是循环的。假设一条直线$l$是非倾斜的,如果$C \cap l \ne \emptyset$,即$\deg \pi\_l < \deg C = 6$。我们研究了$C$的非斜循环线的数目。作为主要结果,我们明确给出了$C$具有两个循环三角态射的特殊情况下$C$的方程;证明了$\deg \pi\_l =4$的循环线数最多为$1$, $\deg \pi\_l =5$的循环线数最多为$1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信