Centralizers of Nilpotent Elements in Basic Classical Lie Superalgebras in Good Characteristic

Pub Date : 2023-09-12 DOI:10.1007/s00031-023-09814-3
Leyu Han
{"title":"Centralizers of Nilpotent Elements in Basic Classical Lie Superalgebras in Good Characteristic","authors":"Leyu Han","doi":"10.1007/s00031-023-09814-3","DOIUrl":null,"url":null,"abstract":"Abstract Let $$\\mathfrak {g}=\\mathfrak {g}_{\\bar{0}}\\oplus \\mathfrak {g}_{\\bar{1}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mover> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:msub> <mml:mo>⊕</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mover> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:msub> </mml:mrow> </mml:math> be a basic classical Lie superalgebra over an algebraically closed field $$\\mathbb {K}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>K</mml:mi> </mml:math> whose characteristic $$p&gt;0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> is a good prime for $$\\mathfrak {g}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>g</mml:mi> </mml:math> . Let $$G_{\\bar{0}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>G</mml:mi> <mml:mover> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:msub> </mml:math> be the reductive algebraic group over $$\\mathbb {K}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>K</mml:mi> </mml:math> such that $$\\textrm{Lie}(G_{\\bar{0}})=\\mathfrak {g}_{\\bar{0}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>Lie</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mover> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mover> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:msub> </mml:mrow> </mml:math> . Suppose $$e\\in \\mathfrak {g}_{\\bar{0}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>e</mml:mi> <mml:mo>∈</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mover> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:msub> </mml:mrow> </mml:math> is nilpotent. Write $$\\mathfrak {g}^{e}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>g</mml:mi> </mml:mrow> <mml:mi>e</mml:mi> </mml:msup> </mml:math> for the centralizer of e in $$\\mathfrak {g}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>g</mml:mi> </mml:math> and $$\\mathfrak {z}(\\mathfrak {g}^{e})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>z</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>g</mml:mi> </mml:mrow> <mml:mi>e</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> for the centre of $$\\mathfrak {g}^{e}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>g</mml:mi> </mml:mrow> <mml:mi>e</mml:mi> </mml:msup> </mml:math> . We calculate a basis for $$\\mathfrak {g}^{e}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>g</mml:mi> </mml:mrow> <mml:mi>e</mml:mi> </mml:msup> </mml:math> and $$\\mathfrak {z}(\\mathfrak {g}^{e})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>z</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>g</mml:mi> </mml:mrow> <mml:mi>e</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> by using associated cocharacters $$\\tau :\\mathbb {K}^{\\times }\\rightarrow G_{\\bar{0}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>τ</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mo>×</mml:mo> </mml:msup> <mml:mo>→</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mover> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:msub> </mml:mrow> </mml:math> of e . In addition, we give the classification of e which are reachable, strongly reachable or satisfy the Panyushev property for exceptional Lie superalgebras $$D(2,1;\\alpha )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>;</mml:mo> <mml:mi>α</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , G (3) and F (4).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00031-023-09814-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let $$\mathfrak {g}=\mathfrak {g}_{\bar{0}}\oplus \mathfrak {g}_{\bar{1}}$$ g = g 0 ¯ g 1 ¯ be a basic classical Lie superalgebra over an algebraically closed field $$\mathbb {K}$$ K whose characteristic $$p>0$$ p > 0 is a good prime for $$\mathfrak {g}$$ g . Let $$G_{\bar{0}}$$ G 0 ¯ be the reductive algebraic group over $$\mathbb {K}$$ K such that $$\textrm{Lie}(G_{\bar{0}})=\mathfrak {g}_{\bar{0}}$$ Lie ( G 0 ¯ ) = g 0 ¯ . Suppose $$e\in \mathfrak {g}_{\bar{0}}$$ e g 0 ¯ is nilpotent. Write $$\mathfrak {g}^{e}$$ g e for the centralizer of e in $$\mathfrak {g}$$ g and $$\mathfrak {z}(\mathfrak {g}^{e})$$ z ( g e ) for the centre of $$\mathfrak {g}^{e}$$ g e . We calculate a basis for $$\mathfrak {g}^{e}$$ g e and $$\mathfrak {z}(\mathfrak {g}^{e})$$ z ( g e ) by using associated cocharacters $$\tau :\mathbb {K}^{\times }\rightarrow G_{\bar{0}}$$ τ : K × G 0 ¯ of e . In addition, we give the classification of e which are reachable, strongly reachable or satisfy the Panyushev property for exceptional Lie superalgebras $$D(2,1;\alpha )$$ D ( 2 , 1 ; α ) , G (3) and F (4).

Abstract Image

分享
查看原文
基本经典李超代数中幂零元的中心中心
设$$\mathfrak {g}=\mathfrak {g}_{\bar{0}}\oplus \mathfrak {g}_{\bar{1}}$$ g = g 0¯⊕g 1¯是代数闭场$$\mathbb {K}$$ K上的一个基本经典李超代数,其特征为$$p>0$$ p &gt;0是$$\mathfrak {g}$$ g的好质数。设$$G_{\bar{0}}$$ G 0¯为$$\mathbb {K}$$ K上的约化代数群,使得$$\textrm{Lie}(G_{\bar{0}})=\mathfrak {g}_{\bar{0}}$$ Lie (G 0¯)= G 0¯。假设$$e\in \mathfrak {g}_{\bar{0}}$$ e∈g 0¯是幂零的。将$$\mathfrak {g}$$ g中的e的扶正器写成$$\mathfrak {g}^{e}$$ g e,将$$\mathfrak {g}^{e}$$ g e的中心写成$$\mathfrak {z}(\mathfrak {g}^{e})$$ z (g e)。我们通过使用相关的协字符$$\tau :\mathbb {K}^{\times }\rightarrow G_{\bar{0}}$$ τ: K x→g 0¯(e)来计算$$\mathfrak {g}^{e}$$ g e和$$\mathfrak {z}(\mathfrak {g}^{e})$$ z (g e)的基。此外,我们给出了例外李超代数$$D(2,1;\alpha )$$ D (2,1; α)、G(3)和F(4)的可达、强可达或满足Panyushev性质e的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信