{"title":"A digital twin reference architecture for pharmaceutical cannabis production","authors":"Orestis Spyrou, Cor Verdouw, William Hurst","doi":"10.1080/0951192x.2023.2257635","DOIUrl":null,"url":null,"abstract":"The production of pharmaceutical cannabis is a complex and dynamic industry that has to meet critical challenges concerning product quality, compliance, traceability, food safety, sustainability and health. Digital twins have the potential to be powerful enablers for producers to meet these challenges. However, digital twins for the pharmaceutical production of cannabis are still under exploration and not yet researched. This paper contributes to overcoming this situation by proposing a reference architecture for the development and implementation of digital twins in this domain. Based on a design-oriented methodology, it defines and applies a coherent set of architecture views for modelling digital twin-based systems. Furthermore, a proof of concept of an immersive digital twin has been developed in order to test the applicability of reference architecture. This digital twin is developed in the open, cross-industry platform Unity and includes an extensive 3D model of a cannabis production facility. It is connected with real-world data through an application programming interface integration displaying real-time sensor data from a live greenhouse. The 3D environment is fully explorable, where the user takes control of an avatar character to walk around the facility and view real-time sensor readings. The expert validation shows that the developed digital twin is a valuable and innovative first step for remote management of pharmaceutical cannabis production. Further developments are needed to leverage its full potential, especially adding more types of sensor data, developing implementation-specific 3D models, extending the digital twin with predictive and prescriptive capabilities and connecting it to actuators.","PeriodicalId":13907,"journal":{"name":"International Journal of Computer Integrated Manufacturing","volume":"31 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Integrated Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0951192x.2023.2257635","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The production of pharmaceutical cannabis is a complex and dynamic industry that has to meet critical challenges concerning product quality, compliance, traceability, food safety, sustainability and health. Digital twins have the potential to be powerful enablers for producers to meet these challenges. However, digital twins for the pharmaceutical production of cannabis are still under exploration and not yet researched. This paper contributes to overcoming this situation by proposing a reference architecture for the development and implementation of digital twins in this domain. Based on a design-oriented methodology, it defines and applies a coherent set of architecture views for modelling digital twin-based systems. Furthermore, a proof of concept of an immersive digital twin has been developed in order to test the applicability of reference architecture. This digital twin is developed in the open, cross-industry platform Unity and includes an extensive 3D model of a cannabis production facility. It is connected with real-world data through an application programming interface integration displaying real-time sensor data from a live greenhouse. The 3D environment is fully explorable, where the user takes control of an avatar character to walk around the facility and view real-time sensor readings. The expert validation shows that the developed digital twin is a valuable and innovative first step for remote management of pharmaceutical cannabis production. Further developments are needed to leverage its full potential, especially adding more types of sensor data, developing implementation-specific 3D models, extending the digital twin with predictive and prescriptive capabilities and connecting it to actuators.
期刊介绍:
International Journal of Computer Integrated Manufacturing (IJCIM) reports new research in theory and applications of computer integrated manufacturing. The scope spans mechanical and manufacturing engineering, software and computer engineering as well as automation and control engineering with a particular focus on today’s data driven manufacturing. Terms such as industry 4.0, intelligent manufacturing, digital manufacturing and cyber-physical manufacturing systems are now used to identify the area of knowledge that IJCIM has supported and shaped in its history of more than 30 years.
IJCIM continues to grow and has become a key forum for academics and industrial researchers to exchange information and ideas. In response to this interest, IJCIM is now published monthly, enabling the editors to target topical special issues; topics as diverse as digital twins, transdisciplinary engineering, cloud manufacturing, deep learning for manufacturing, service-oriented architectures, dematerialized manufacturing systems, wireless manufacturing and digital enterprise technologies to name a few.