Some new restricted maximal operators of Fejér means of Walsh–Fourier series

IF 1.1 2区 数学 Q1 MATHEMATICS
Davit Baramidze, Lasha Baramidze, Lars-Erik Perssson, George Tephnadze
{"title":"Some new restricted maximal operators of Fejér means of Walsh–Fourier series","authors":"Davit Baramidze, Lasha Baramidze, Lars-Erik Perssson, George Tephnadze","doi":"10.1007/s43037-023-00300-2","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we derive the maximal subspace of natural numbers $$\\left\\{ n_{k}:k\\ge 0\\right\\} ,$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mfenced> <mml:msub> <mml:mi>n</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>:</mml:mo> <mml:mi>k</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mfenced> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> such that the restricted maximal operator, defined by $${\\sup }_{k\\in {\\mathbb {N}}}\\left| \\sigma _{n_{k}}F\\right| $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mo>sup</mml:mo> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:msub> <mml:mfenced> <mml:msub> <mml:mi>σ</mml:mi> <mml:msub> <mml:mi>n</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:msub> <mml:mi>F</mml:mi> </mml:mfenced> </mml:mrow> </mml:math> on this subspace of Fejér means of Walsh–Fourier series is bounded from the martingale Hardy space $$H_{1/2}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>H</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:math> to the Lebesgue space $$L_{1/2}.$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>.</mml:mo> </mml:mrow> </mml:math> The sharpness of this result is also proved.","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"24 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43037-023-00300-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we derive the maximal subspace of natural numbers $$\left\{ n_{k}:k\ge 0\right\} ,$$ n k : k 0 , such that the restricted maximal operator, defined by $${\sup }_{k\in {\mathbb {N}}}\left| \sigma _{n_{k}}F\right| $$ sup k N σ n k F on this subspace of Fejér means of Walsh–Fourier series is bounded from the martingale Hardy space $$H_{1/2}$$ H 1 / 2 to the Lebesgue space $$L_{1/2}.$$ L 1 / 2 . The sharpness of this result is also proved.
沃尔什-傅里叶级数fejsamr均值的一些新的限制极大算子
摘要本文导出了自然数的极大子空间$$\left\{ n_{k}:k\ge 0\right\} ,$$ n k: k≥0,使得约束极大算子(由$${\sup }_{k\in {\mathbb {N}}}\left| \sigma _{n_{k}}F\right| $$ sup k∈n σ n k F定义)在这个w -傅里叶级数的fej均值子空间上由鞅Hardy空间$$H_{1/2}$$ H 1 / 2有界到Lebesgue空间$$L_{1/2}.$$ L 1 / 2。并证明了该结果的清晰性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信