Davit Baramidze, Lasha Baramidze, Lars-Erik Perssson, George Tephnadze
{"title":"Some new restricted maximal operators of Fejér means of Walsh–Fourier series","authors":"Davit Baramidze, Lasha Baramidze, Lars-Erik Perssson, George Tephnadze","doi":"10.1007/s43037-023-00300-2","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we derive the maximal subspace of natural numbers $$\\left\\{ n_{k}:k\\ge 0\\right\\} ,$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mfenced> <mml:msub> <mml:mi>n</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>:</mml:mo> <mml:mi>k</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mfenced> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> such that the restricted maximal operator, defined by $${\\sup }_{k\\in {\\mathbb {N}}}\\left| \\sigma _{n_{k}}F\\right| $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mo>sup</mml:mo> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:msub> <mml:mfenced> <mml:msub> <mml:mi>σ</mml:mi> <mml:msub> <mml:mi>n</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:msub> <mml:mi>F</mml:mi> </mml:mfenced> </mml:mrow> </mml:math> on this subspace of Fejér means of Walsh–Fourier series is bounded from the martingale Hardy space $$H_{1/2}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>H</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:math> to the Lebesgue space $$L_{1/2}.$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>.</mml:mo> </mml:mrow> </mml:math> The sharpness of this result is also proved.","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"24 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43037-023-00300-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we derive the maximal subspace of natural numbers $$\left\{ n_{k}:k\ge 0\right\} ,$$ nk:k≥0, such that the restricted maximal operator, defined by $${\sup }_{k\in {\mathbb {N}}}\left| \sigma _{n_{k}}F\right| $$ supk∈NσnkF on this subspace of Fejér means of Walsh–Fourier series is bounded from the martingale Hardy space $$H_{1/2}$$ H1/2 to the Lebesgue space $$L_{1/2}.$$ L1/2. The sharpness of this result is also proved.
期刊介绍:
The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.