Understanding the predication mechanism of deep learning through error propagation among parameters in strong lensing case

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Xi-Long Fan, Peizheng Wang, Jin Li, Nan Yang
{"title":"Understanding the predication mechanism of deep learning through error propagation among parameters in strong lensing case","authors":"Xi-Long Fan, Peizheng Wang, Jin Li, Nan Yang","doi":"10.1088/1674-4527/ad0498","DOIUrl":null,"url":null,"abstract":"Abstract The error propagation among estimated parameters reflects the correlation among the parameters. We study the capability of machine learning of ``learning\" the correlation of estimated parameters. We show that machine learning can recover the relation between the uncertainties of different parameters, especially, as predicted by the error propagation formula. As a proof-of-principle test, a toy model of linear relation with Gaussian noise is presented. We found that the predictions obtained by machine learning indeed indicate the information about the law of error propagation and the distribution of noise. Gravitational lensing can be used to probe both astrophysics and cosmology. As a practical application, we show that the machine learning is able to intelligently find the error propagation among the gravitational lens parameters (effective lens mass $M_{L}$ and Einstein radius $\\theta_{E}$) in accordance with the theoretical formula for the singular isothermal ellipse (SIE) lens model. The relation of errors of lens mass and Einstein radius, (e.g. the ratio of standard deviations $\\mathcal{F}=\\sigma_{\\hat{ M_{L}}}/ \\sigma_{\\hat{\\theta_{E}}}$) predicted by the deep convolution neural network are consistent with the error propagation formula of SIE lens model. Error propagation plays a crucial role in identifying the physical relation among parameters, rather than a coincidence relation, therefore we anticipate our case study on the error propagation of machine learning predictions could extend to other physical systems on searching the correlation among parameters.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"8 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad0498","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The error propagation among estimated parameters reflects the correlation among the parameters. We study the capability of machine learning of ``learning" the correlation of estimated parameters. We show that machine learning can recover the relation between the uncertainties of different parameters, especially, as predicted by the error propagation formula. As a proof-of-principle test, a toy model of linear relation with Gaussian noise is presented. We found that the predictions obtained by machine learning indeed indicate the information about the law of error propagation and the distribution of noise. Gravitational lensing can be used to probe both astrophysics and cosmology. As a practical application, we show that the machine learning is able to intelligently find the error propagation among the gravitational lens parameters (effective lens mass $M_{L}$ and Einstein radius $\theta_{E}$) in accordance with the theoretical formula for the singular isothermal ellipse (SIE) lens model. The relation of errors of lens mass and Einstein radius, (e.g. the ratio of standard deviations $\mathcal{F}=\sigma_{\hat{ M_{L}}}/ \sigma_{\hat{\theta_{E}}}$) predicted by the deep convolution neural network are consistent with the error propagation formula of SIE lens model. Error propagation plays a crucial role in identifying the physical relation among parameters, rather than a coincidence relation, therefore we anticipate our case study on the error propagation of machine learning predictions could extend to other physical systems on searching the correlation among parameters.
强透镜情况下参数间误差传播的深度学习预测机制研究
估计参数之间的误差传播反映了参数之间的相关性。我们研究了机器学习的能力,即“学习”估计参数的相关性。我们证明了机器学习可以恢复不同参数的不确定性之间的关系,特别是根据误差传播公式预测的。作为原理验证,本文给出了一个与高斯噪声线性关系的玩具模型。我们发现,通过机器学习获得的预测确实表明了有关误差传播规律和噪声分布的信息。引力透镜可以用来探测天体物理学和宇宙学。作为实际应用,我们证明了机器学习能够根据奇异等温椭圆(SIE)透镜模型的理论公式智能地找到引力透镜参数(有效透镜质量$M_{L}$和爱因斯坦半径$\theta_{E}$)之间的误差传播。深度卷积神经网络预测的透镜质量误差与爱因斯坦半径的关系(如标准差比$\mathcal{F}=\sigma_{\hat{ M_{L}}}/ \sigma_{\hat{\theta_{E}}}$)与SIE透镜模型的误差传播公式一致。误差传播在识别参数之间的物理关系而不是巧合关系中起着至关重要的作用,因此我们期望我们对机器学习预测的误差传播的案例研究可以扩展到其他物理系统中搜索参数之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in Astronomy and Astrophysics
Research in Astronomy and Astrophysics 地学天文-天文与天体物理
CiteScore
3.20
自引率
16.70%
发文量
2599
审稿时长
6.0 months
期刊介绍: Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics: -large-scale structure of universe formation and evolution of galaxies- high-energy and cataclysmic processes in astrophysics- formation and evolution of stars- astrogeodynamics- solar magnetic activity and heliogeospace environments- dynamics of celestial bodies in the solar system and artificial bodies- space observation and exploration- new astronomical techniques and methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信