{"title":"Divisions and Square Roots with Tight Error Analysis from Newton–Raphson Iteration in Secure Fixed-Point Arithmetic","authors":"Stan Korzilius, Berry Schoenmakers","doi":"10.3390/cryptography7030043","DOIUrl":null,"url":null,"abstract":"In this paper, we present new variants of Newton–Raphson-based protocols for the secure computation of the reciprocal and the (reciprocal) square root. The protocols rely on secure fixed-point arithmetic with arbitrary precision parameterized by the total bit length of the fixed-point numbers and the bit length of the fractional part. We perform a rigorous error analysis aiming for tight accuracy claims while minimizing the overall cost of the protocols. Due to the nature of secure fixed-point arithmetic, we perform the analysis in terms of absolute errors. Whenever possible, we allow for stochastic (or probabilistic) rounding as an efficient alternative to deterministic rounding. We also present a new protocol for secure integer division based on our protocol for secure fixed-point reciprocals. The resulting protocol is parameterized by the bit length of the inputs and yields exact results for the integral quotient and remainder. The protocol is very efficient, minimizing the number of secure comparisons. Similarly, we present a new protocol for integer square roots based on our protocol for secure fixed-point square roots. The quadratic convergence of the Newton–Raphson method implies a logarithmic number of iterations as a function of the required precision (independent of the input value). The standard error analysis of the Newton–Raphson method focuses on the termination condition for attaining the required precision, assuming sufficiently precise floating-point arithmetic. We perform an intricate error analysis assuming fixed-point arithmetic of minimal precision throughout and minimizing the number of iterations in the worst case.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography7030043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we present new variants of Newton–Raphson-based protocols for the secure computation of the reciprocal and the (reciprocal) square root. The protocols rely on secure fixed-point arithmetic with arbitrary precision parameterized by the total bit length of the fixed-point numbers and the bit length of the fractional part. We perform a rigorous error analysis aiming for tight accuracy claims while minimizing the overall cost of the protocols. Due to the nature of secure fixed-point arithmetic, we perform the analysis in terms of absolute errors. Whenever possible, we allow for stochastic (or probabilistic) rounding as an efficient alternative to deterministic rounding. We also present a new protocol for secure integer division based on our protocol for secure fixed-point reciprocals. The resulting protocol is parameterized by the bit length of the inputs and yields exact results for the integral quotient and remainder. The protocol is very efficient, minimizing the number of secure comparisons. Similarly, we present a new protocol for integer square roots based on our protocol for secure fixed-point square roots. The quadratic convergence of the Newton–Raphson method implies a logarithmic number of iterations as a function of the required precision (independent of the input value). The standard error analysis of the Newton–Raphson method focuses on the termination condition for attaining the required precision, assuming sufficiently precise floating-point arithmetic. We perform an intricate error analysis assuming fixed-point arithmetic of minimal precision throughout and minimizing the number of iterations in the worst case.