On solutions to a novel non-evolutionary integrable 1+1 PDE

Francesco Giglio, Giulio Landolfi, L Martina
{"title":"On solutions to a novel non-evolutionary integrable 1+1 PDE","authors":"Francesco Giglio, Giulio Landolfi, L Martina","doi":"10.1088/1751-8121/ad04a5","DOIUrl":null,"url":null,"abstract":"Abstract We investigate real solutions of a C-integrable non-evolutionary partial differential equation in the form of a scalar conservation law where the flux density depends both on the density and on its first derivatives with respect to the local variables. By performing a similarity reduction dictated by one of its local symmetry generators, a nonlinear ordinary differential equation arises that is connected to the Painlevé III equation. Exact solutions are secured and described provided a constraint holds among the coefficients of the original equation. In the most general case, we pinpoint the generation of additional singularities by numerical integration. Then, we discuss the evolution of given initial profiles. Finally, we mention aspects concerning rational solutions with a finite number of poles.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad04a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We investigate real solutions of a C-integrable non-evolutionary partial differential equation in the form of a scalar conservation law where the flux density depends both on the density and on its first derivatives with respect to the local variables. By performing a similarity reduction dictated by one of its local symmetry generators, a nonlinear ordinary differential equation arises that is connected to the Painlevé III equation. Exact solutions are secured and described provided a constraint holds among the coefficients of the original equation. In the most general case, we pinpoint the generation of additional singularities by numerical integration. Then, we discuss the evolution of given initial profiles. Finally, we mention aspects concerning rational solutions with a finite number of poles.
一类新型非进化可积1+1偏微分方程的解
研究了一类c可积非演化偏微分方程的标量守恒形式的实解,其中通量密度既依赖于密度,也依赖于它对局部变量的一阶导数。通过执行由其局部对称生成器之一决定的相似性缩减,出现了与painleveiii方程相连的非线性常微分方程。给出了精确解,并给出了原方程系数间的约束条件。在最一般的情况下,我们通过数值积分来确定额外奇点的产生。然后,我们讨论了给定初始轮廓的演化。最后,我们提到关于有限极点的有理解的一些方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信