Impact of Air Exposure on Growth Rate and Electrical Properties of SnO2 Thin Films by Atmospheric Pressure Spatial Atomic Layer Deposition

Hang Thi My Tran, Ngoc Linh Nguyen, Trung Kien Mac, Duc Anh Duong, Thien Thanh Nguyen, Anh-Tuan Duong, Hao Van Bui, Viet Huong NGUYEN
{"title":"Impact of Air Exposure on Growth Rate and Electrical Properties of SnO<sub>2</sub> Thin Films by Atmospheric Pressure Spatial Atomic Layer Deposition","authors":"Hang Thi My Tran, Ngoc Linh Nguyen, Trung Kien Mac, Duc Anh Duong, Thien Thanh Nguyen, Anh-Tuan Duong, Hao Van Bui, Viet Huong NGUYEN","doi":"10.1088/1361-6463/ad01c7","DOIUrl":null,"url":null,"abstract":"Abstract SnO 2 thin film is one of the most studied transparent conductive materials that can be deposited using vacuum-free techniques such as atmospheric pressure spatial atomic layer deposition (AP-SALD). This work studies SnO 2 thin films prepared from tin(II) acetylacetonate and water vapor, with a particular focus on the impact of air exposure during the AP-SALD process on the growth rate and electrical properties of the films. In-situ resistance measurements and ex-situ Hall effect characterization demonstrated that longer exposure time of the growing film surface to the open air ( t air ) at 240 °C led to conductivity degradation, while the film thickness decreases. The theoretical calculations show that −OH and <?CDATA ${{\\text{O}}_2}^{{\\text{dm}}}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msup> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>O</mml:mtext> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mtext>dm</mml:mtext> </mml:mrow> </mml:mrow> </mml:msup> </mml:math> (oxygen molecule adsorbed on the five-coordinated Sn atom, also called O 2 dimer) are the two most stable surface structures. The formation of <?CDATA ${{\\text{O}}_2}^{{\\text{dm}}}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msup> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>O</mml:mtext> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mrow> <mml:mrow> <mml:mtext>dm</mml:mtext> </mml:mrow> </mml:mrow> </mml:msup> </mml:math> is shown as the most thermodynamically favorable oxygen-related species on SnO 2 (110) surface formed when the film is exposed to the open air, giving rise to both the decrease of film thickness (associated with the desorption of −OH surface groups) and the increase of film resistivity versus t air . The optimized polycrystalline SnO 2 sample demonstrated relatively good electrical performance, including an electrical resistivity of 9.3 × 10 −3 Ω.cm, carrier density of 9.2 × 10 19 cm −3 , and Hall mobility of 7.3 cm 2 V −1 s −1 at a growth temperature as low as 240 °C. Our findings reveal the critical impact of processing in the open air on the electrical conductivity of the obtained SnO 2 films by AP-SALD coating technology.","PeriodicalId":16833,"journal":{"name":"Journal of Physics D","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad01c7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract SnO 2 thin film is one of the most studied transparent conductive materials that can be deposited using vacuum-free techniques such as atmospheric pressure spatial atomic layer deposition (AP-SALD). This work studies SnO 2 thin films prepared from tin(II) acetylacetonate and water vapor, with a particular focus on the impact of air exposure during the AP-SALD process on the growth rate and electrical properties of the films. In-situ resistance measurements and ex-situ Hall effect characterization demonstrated that longer exposure time of the growing film surface to the open air ( t air ) at 240 °C led to conductivity degradation, while the film thickness decreases. The theoretical calculations show that −OH and O 2 dm (oxygen molecule adsorbed on the five-coordinated Sn atom, also called O 2 dimer) are the two most stable surface structures. The formation of O 2 dm is shown as the most thermodynamically favorable oxygen-related species on SnO 2 (110) surface formed when the film is exposed to the open air, giving rise to both the decrease of film thickness (associated with the desorption of −OH surface groups) and the increase of film resistivity versus t air . The optimized polycrystalline SnO 2 sample demonstrated relatively good electrical performance, including an electrical resistivity of 9.3 × 10 −3 Ω.cm, carrier density of 9.2 × 10 19 cm −3 , and Hall mobility of 7.3 cm 2 V −1 s −1 at a growth temperature as low as 240 °C. Our findings reveal the critical impact of processing in the open air on the electrical conductivity of the obtained SnO 2 films by AP-SALD coating technology.
空气暴露对常压空间原子层沉积SnO2薄膜生长速率和电性能的影响
sno2薄膜是目前研究最多的透明导电材料之一,可采用常压空间原子层沉积(AP-SALD)等无真空技术制备。本文研究了由乙酰丙酮锡和水蒸气制备的sno2薄膜,特别关注了AP-SALD过程中空气暴露对薄膜生长速度和电性能的影响。原位电阻测量和非原位霍尔效应表征表明,生长膜表面暴露在240°C的空气中时间越长,电导率就会下降,而膜的厚度则会减小。理论计算表明- OH和o2 dm(氧分子吸附在五配位的Sn原子上,也称为o2二聚体)是两种最稳定的表面结构。o2dm的形成是sno2(110)表面暴露在空气中时形成的最有利的热力学氧相关物质,导致膜厚度的减小(与- OH表面基团的解吸有关)和膜电阻率相对于空气的增加。优化后的多晶sno2样品具有较好的电学性能,电阻率为9.3 × 10−3 Ω。在低至240℃的生长温度下,载流子密度为9.2 × 10 19 cm−3,霍尔迁移率为7.3 cm 2 V−1 s−1。我们的研究结果揭示了露天处理对AP-SALD涂层技术获得的SnO 2薄膜的导电性的关键影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信