{"title":"Maximal $L^{1}$-regularity and free boundary problems for the incompressible Navier–Stokes equations in critical spaces","authors":"Takayoshi OGAWA, Senjo SHIMIZU","doi":"10.2969/jmsj/88288828","DOIUrl":null,"url":null,"abstract":"Time-dependent free surface problem for the incompressible Navier–Stokes equations which describes the motion of viscous incompressible fluid nearly half-space are considered. We obtain global well-posedness of the problem for a small initial data in scale invariant critical Besov spaces. Our proof is based on maximal $L^{1}$-regularity of the corresponding Stokes problem in the half-space and special structures of the quasi-linear term appearing from the Lagrangian transform of the coordinate.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2969/jmsj/88288828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Time-dependent free surface problem for the incompressible Navier–Stokes equations which describes the motion of viscous incompressible fluid nearly half-space are considered. We obtain global well-posedness of the problem for a small initial data in scale invariant critical Besov spaces. Our proof is based on maximal $L^{1}$-regularity of the corresponding Stokes problem in the half-space and special structures of the quasi-linear term appearing from the Lagrangian transform of the coordinate.