Maximal $L^{1}$-regularity and free boundary problems for the incompressible Navier–Stokes equations in critical spaces

IF 0.7 4区 数学 Q2 MATHEMATICS
Takayoshi OGAWA, Senjo SHIMIZU
{"title":"Maximal $L^{1}$-regularity and free boundary problems for the incompressible Navier–Stokes equations in critical spaces","authors":"Takayoshi OGAWA, Senjo SHIMIZU","doi":"10.2969/jmsj/88288828","DOIUrl":null,"url":null,"abstract":"Time-dependent free surface problem for the incompressible Navier–Stokes equations which describes the motion of viscous incompressible fluid nearly half-space are considered. We obtain global well-posedness of the problem for a small initial data in scale invariant critical Besov spaces. Our proof is based on maximal $L^{1}$-regularity of the corresponding Stokes problem in the half-space and special structures of the quasi-linear term appearing from the Lagrangian transform of the coordinate.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":"14 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mathematical Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2969/jmsj/88288828","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Time-dependent free surface problem for the incompressible Navier–Stokes equations which describes the motion of viscous incompressible fluid nearly half-space are considered. We obtain global well-posedness of the problem for a small initial data in scale invariant critical Besov spaces. Our proof is based on maximal $L^{1}$-regularity of the corresponding Stokes problem in the half-space and special structures of the quasi-linear term appearing from the Lagrangian transform of the coordinate.
临界空间不可压缩Navier-Stokes方程的极大L^{1}$正则性与自由边界问题
研究了描述粘性不可压缩流体近半空间运动的不可压缩Navier-Stokes方程的随时间自由曲面问题。在尺度不变临界Besov空间中,我们得到了小初始数据问题的全局适定性。我们的证明是基于半空间中相应的Stokes问题的极大$L^{1}$的正则性和由坐标的拉格朗日变换出现的拟线性项的特殊结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: The Journal of the Mathematical Society of Japan (JMSJ) was founded in 1948 and is published quarterly by the Mathematical Society of Japan (MSJ). It covers a wide range of pure mathematics. To maintain high standards, research articles in the journal are selected by the editorial board with the aid of distinguished international referees. Electronic access to the articles is offered through Project Euclid and J-STAGE. We provide free access to back issues three years after publication (available also at Online Index).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信