Rojo Randrianomentsoa, Hans van Ditmarsch, Roman Kuznets
{"title":"Impure Simplicial Complexes: Complete Axiomatization","authors":"Rojo Randrianomentsoa, Hans van Ditmarsch, Roman Kuznets","doi":"10.46298/lmcs-19(4:3)2023","DOIUrl":null,"url":null,"abstract":"Combinatorial topology is used in distributed computing to model concurrency and asynchrony. The basic structure in combinatorial topology is the simplicial complex, a collection of subsets called simplices of a set of vertices, closed under containment. Pure simplicial complexes describe message passing in asynchronous systems where all processes (agents) are alive, whereas impure simplicial complexes describe message passing in synchronous systems where processes may be dead (have crashed). Properties of impure simplicial complexes can be described in a three-valued multi-agent epistemic logic where the third value represents formulae that are undefined, e.g., the knowledge and local propositions of dead agents. In this work we present an axiomatization for the logic of the class of impure complexes and show soundness and completeness. The completeness proof involves the novel construction of the canonical simplicial model and requires a careful manipulation of undefined formulae.","PeriodicalId":49904,"journal":{"name":"Logical Methods in Computer Science","volume":"70 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logical Methods in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(4:3)2023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Combinatorial topology is used in distributed computing to model concurrency and asynchrony. The basic structure in combinatorial topology is the simplicial complex, a collection of subsets called simplices of a set of vertices, closed under containment. Pure simplicial complexes describe message passing in asynchronous systems where all processes (agents) are alive, whereas impure simplicial complexes describe message passing in synchronous systems where processes may be dead (have crashed). Properties of impure simplicial complexes can be described in a three-valued multi-agent epistemic logic where the third value represents formulae that are undefined, e.g., the knowledge and local propositions of dead agents. In this work we present an axiomatization for the logic of the class of impure complexes and show soundness and completeness. The completeness proof involves the novel construction of the canonical simplicial model and requires a careful manipulation of undefined formulae.
期刊介绍:
Logical Methods in Computer Science is a fully refereed, open access, free, electronic journal. It welcomes papers on theoretical and practical areas in computer science involving logical methods, taken in a broad sense; some particular areas within its scope are listed below. Papers are refereed in the traditional way, with two or more referees per paper. Copyright is retained by the author.
Topics of Logical Methods in Computer Science:
Algebraic methods
Automata and logic
Automated deduction
Categorical models and logic
Coalgebraic methods
Computability and Logic
Computer-aided verification
Concurrency theory
Constraint programming
Cyber-physical systems
Database theory
Defeasible reasoning
Domain theory
Emerging topics: Computational systems in biology
Emerging topics: Quantum computation and logic
Finite model theory
Formalized mathematics
Functional programming and lambda calculus
Inductive logic and learning
Interactive proof checking
Logic and algorithms
Logic and complexity
Logic and games
Logic and probability
Logic for knowledge representation
Logic programming
Logics of programs
Modal and temporal logics
Program analysis and type checking
Program development and specification
Proof complexity
Real time and hybrid systems
Reasoning about actions and planning
Satisfiability
Security
Semantics of programming languages
Term rewriting and equational logic
Type theory and constructive mathematics.