Noncommutative geometry and deformation quantization in the quantum Hall fluids with inhomogeneous magnetic fields

Giandomenico Palumbo
{"title":"Noncommutative geometry and deformation quantization in the quantum Hall fluids with inhomogeneous magnetic fields","authors":"Giandomenico Palumbo","doi":"10.1088/1751-8121/ad018b","DOIUrl":null,"url":null,"abstract":"Abstract It is well known that noncommutative geometry naturally emerges in the quantum Hall states due to the presence of strong and constant magnetic fields. Here, we discuss the underlying noncommutative geometry of quantum Hall fluids in which the magnetic fields are spatially inhomogenoeus. We analyze these cases by employing symplectic geometry and Fedosov’s deformation quantization, which rely on symplectic connections and Fedosov’s star-product. Through this formalism, we unveil some new features concerning the static limit of the Haldane’s unimodular metric and the Girvin–MacDonald–Platzman algebra of the density operators, which plays a central role in the fractional quantum Hall effect.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad018b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract It is well known that noncommutative geometry naturally emerges in the quantum Hall states due to the presence of strong and constant magnetic fields. Here, we discuss the underlying noncommutative geometry of quantum Hall fluids in which the magnetic fields are spatially inhomogenoeus. We analyze these cases by employing symplectic geometry and Fedosov’s deformation quantization, which rely on symplectic connections and Fedosov’s star-product. Through this formalism, we unveil some new features concerning the static limit of the Haldane’s unimodular metric and the Girvin–MacDonald–Platzman algebra of the density operators, which plays a central role in the fractional quantum Hall effect.
非均匀磁场下量子霍尔流体的非交换几何和变形量子化
摘要:众所周知,由于强而恒定的磁场的存在,量子霍尔态中自然出现了非对易几何。在这里,我们讨论了磁场在空间上不均匀的量子霍尔流体的潜在非交换几何。我们利用辛几何和Fedosov的变形量子化来分析这些情况,这些变形量子化依赖于辛连接和Fedosov星积。通过这种形式,我们揭示了在分数量子霍尔效应中起核心作用的密度算子的非模度量的静态极限和Girvin-MacDonald-Platzman代数的一些新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信