{"title":"A Dynamic Drilling Sampling Method and Evaluation Model for Big Streaming Data","authors":"Zhaohui Zhang, Pei Zhang, Peng Zhang, Fujuan Xu, Chaochao Hu, Pengwei Wang","doi":"10.1142/s0218194023410036","DOIUrl":null,"url":null,"abstract":"The big data sampling method for real-time and high-speed streaming data is prone to lose the value and information of a large amount of discrete data, and it is not easy to make an efficient and accurate evaluation of the value characteristics of streaming data. The SDSLA sampling method based on mineral drilling exploration can evaluate the valuable information of streaming data containing many discrete data in real-time, but when the range of discrete data is irregular, it has low sampling accuracy for discrete data. Based on the SDSLA algorithm, we propose a dynamic drilling sampling method SDDS, which takes well as the analysis unit, dynamically changes the size and position of the well, and accurately locates the position and range of discrete data. A new model SDVEM is further proposed for data valuation, which evaluates the sample set from discrete, centralized, and overall dimensions. Experiments show that compared with the SDSLA algorithm, the sample sampled by the SDDS algorithm has higher evaluation accuracy, and the probability distribution of the sample is closer to the original streaming data, with the AOCV indicator being nearly 10% higher. In addition, the SDDS algorithm can achieve over 90% accuracy, recall, and F1 score for training and testing neural networks with small sampling rates, all of which are higher than the SDSLA algorithm. In summary, the SDDS algorithm not only accurately evaluates the value characteristics of streaming data but also facilitates the training of neural network models, which has important research significance in big data estimation.","PeriodicalId":50288,"journal":{"name":"International Journal of Software Engineering and Knowledge Engineering","volume":"183 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Engineering and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218194023410036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The big data sampling method for real-time and high-speed streaming data is prone to lose the value and information of a large amount of discrete data, and it is not easy to make an efficient and accurate evaluation of the value characteristics of streaming data. The SDSLA sampling method based on mineral drilling exploration can evaluate the valuable information of streaming data containing many discrete data in real-time, but when the range of discrete data is irregular, it has low sampling accuracy for discrete data. Based on the SDSLA algorithm, we propose a dynamic drilling sampling method SDDS, which takes well as the analysis unit, dynamically changes the size and position of the well, and accurately locates the position and range of discrete data. A new model SDVEM is further proposed for data valuation, which evaluates the sample set from discrete, centralized, and overall dimensions. Experiments show that compared with the SDSLA algorithm, the sample sampled by the SDDS algorithm has higher evaluation accuracy, and the probability distribution of the sample is closer to the original streaming data, with the AOCV indicator being nearly 10% higher. In addition, the SDDS algorithm can achieve over 90% accuracy, recall, and F1 score for training and testing neural networks with small sampling rates, all of which are higher than the SDSLA algorithm. In summary, the SDDS algorithm not only accurately evaluates the value characteristics of streaming data but also facilitates the training of neural network models, which has important research significance in big data estimation.
期刊介绍:
The International Journal of Software Engineering and Knowledge Engineering is intended to serve as a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of software engineering and knowledge engineering. Three types of papers will be published:
Research papers reporting original research results
Technology trend surveys reviewing an area of research in software engineering and knowledge engineering
Survey articles surveying a broad area in software engineering and knowledge engineering
In addition, tool reviews (no more than three manuscript pages) and book reviews (no more than two manuscript pages) are also welcome.
A central theme of this journal is the interplay between software engineering and knowledge engineering: how knowledge engineering methods can be applied to software engineering, and vice versa. The journal publishes papers in the areas of software engineering methods and practices, object-oriented systems, rapid prototyping, software reuse, cleanroom software engineering, stepwise refinement/enhancement, formal methods of specification, ambiguity in software development, impact of CASE on software development life cycle, knowledge engineering methods and practices, logic programming, expert systems, knowledge-based systems, distributed knowledge-based systems, deductive database systems, knowledge representations, knowledge-based systems in language translation & processing, software and knowledge-ware maintenance, reverse engineering in software design, and applications in various domains of interest.