{"title":"Mechanical Response of Applying Different Parameters On Negative Stiffness Honeycomb Structure","authors":"Abdalla Rabie Takrouny, Faris Tarlochan","doi":"10.30880/ijie.2023.15.05.007","DOIUrl":null,"url":null,"abstract":"It has become apparent that negative stiffness behavior may have potential applications in vibration isolation mechanisms, vibro-acoustic dampening materials, and mechanical switches. Unlike traditional honeycombs, due to these properties, a negative honeycomb can absorb substantial amounts of mechanical energy whilst maintaining a stable stress. The force threshold under displacement loading was investigated of three variables applied on different models of negative-stiffness honeycomb (NSH) structures. The three variables are material applied, honeycomb unit cell, and beam thickness of the negative honeycomb structure. Accordingly, nine models were developed, and the three varied materials were assigned repeatably to each model and then force threshold were studied after validating the model. The Finite element analysis (FEA) for formed model was validated and shows force value of 289 N with an error of 5% compared to the referenced model. In the 4- unit cell model, the highest force threshold of approximately 240 N was noticed during loading phase at the beam thickness of 19.05 mm for both nylon 11 and 12 material. Finally, the force threshold of 550 N during loading and unloading phases was observed for nylon 6/6 material at beam thickness of 19.05 mm. The results obtained confirm the negative stiffness behavior on the models and shows that the force threshold applied is reduced comparing to forces required in the conventional honeycombs models.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":"17 4 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.05.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It has become apparent that negative stiffness behavior may have potential applications in vibration isolation mechanisms, vibro-acoustic dampening materials, and mechanical switches. Unlike traditional honeycombs, due to these properties, a negative honeycomb can absorb substantial amounts of mechanical energy whilst maintaining a stable stress. The force threshold under displacement loading was investigated of three variables applied on different models of negative-stiffness honeycomb (NSH) structures. The three variables are material applied, honeycomb unit cell, and beam thickness of the negative honeycomb structure. Accordingly, nine models were developed, and the three varied materials were assigned repeatably to each model and then force threshold were studied after validating the model. The Finite element analysis (FEA) for formed model was validated and shows force value of 289 N with an error of 5% compared to the referenced model. In the 4- unit cell model, the highest force threshold of approximately 240 N was noticed during loading phase at the beam thickness of 19.05 mm for both nylon 11 and 12 material. Finally, the force threshold of 550 N during loading and unloading phases was observed for nylon 6/6 material at beam thickness of 19.05 mm. The results obtained confirm the negative stiffness behavior on the models and shows that the force threshold applied is reduced comparing to forces required in the conventional honeycombs models.
期刊介绍:
The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.