Refactoring BZIP2 on the new‐generation sunway supercomputer

Xiaohui Liu, Zekun Yin, Haodong Tian, Wubing Wan, Mengyuan Hua, Wenlai Zhao, Zhenchun Huang, Ping Gao, Fangjin Zhu, Hua Wang, Xiaohui Duan
{"title":"Refactoring BZIP2 on the new‐generation sunway supercomputer","authors":"Xiaohui Liu, Zekun Yin, Haodong Tian, Wubing Wan, Mengyuan Hua, Wenlai Zhao, Zhenchun Huang, Ping Gao, Fangjin Zhu, Hua Wang, Xiaohui Duan","doi":"10.1002/eng2.12806","DOIUrl":null,"url":null,"abstract":"High‐performance computing is progressively assuming a fundamental role in advancing scientific research and engineering domains. However, the ever‐expanding scales of scientific simulations pose challenges for efficient data I/O and storage. The data compression technology has garnered significant attention as a solution to reduce data transmission and storage costs while enhancing performance. In particular, the BZIP2 lossless compression algorithm has been widely used due to its exceptional compression ratio, moderate compression speed, high reliability, and open‐source nature. This paper focuses on the design and realization of a parallelized BZIP2 algorithm tailored for deployment on the New‐Generation Sunway supercomputing platform. By leveraging the unique cache patterns of the New‐Generation Sunway processor, we propose the highly tuned multi‐threading and multi‐node implementations of the BZIP2 applications for different scenarios. Moreover, we also propose the efficient BZIP2 libraries based on the management processing element and computing processing element which support the commonly used high‐level (de)compression interfaces. The test results indicate that the our multi‐threading implementation achieves maximum speedup of 23.09 (8.57) in decompression(compression) compared to the sequential implementation. Furthermore, the multi‐node implementation achieves 50.81% (26.35%) parallel efficiency and peak performance of 16.6 GB/s (52.8 GB/s) for compression(decompression) when scaling up to 2048 processes.","PeriodicalId":11735,"journal":{"name":"Engineering Reports","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/eng2.12806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High‐performance computing is progressively assuming a fundamental role in advancing scientific research and engineering domains. However, the ever‐expanding scales of scientific simulations pose challenges for efficient data I/O and storage. The data compression technology has garnered significant attention as a solution to reduce data transmission and storage costs while enhancing performance. In particular, the BZIP2 lossless compression algorithm has been widely used due to its exceptional compression ratio, moderate compression speed, high reliability, and open‐source nature. This paper focuses on the design and realization of a parallelized BZIP2 algorithm tailored for deployment on the New‐Generation Sunway supercomputing platform. By leveraging the unique cache patterns of the New‐Generation Sunway processor, we propose the highly tuned multi‐threading and multi‐node implementations of the BZIP2 applications for different scenarios. Moreover, we also propose the efficient BZIP2 libraries based on the management processing element and computing processing element which support the commonly used high‐level (de)compression interfaces. The test results indicate that the our multi‐threading implementation achieves maximum speedup of 23.09 (8.57) in decompression(compression) compared to the sequential implementation. Furthermore, the multi‐node implementation achieves 50.81% (26.35%) parallel efficiency and peak performance of 16.6 GB/s (52.8 GB/s) for compression(decompression) when scaling up to 2048 processes.
在新一代神威超级计算机上重构BZIP2
高性能计算在推进科学研究和工程领域中逐渐发挥着重要作用。然而,不断扩大的科学模拟规模对有效的数据I/O和存储提出了挑战。数据压缩技术作为一种既能降低数据传输和存储成本,又能提高性能的解决方案,受到了广泛关注。特别是,BZIP2无损压缩算法由于其特殊的压缩比、适中的压缩速度、高可靠性和开源性质而被广泛使用。本文研究了一种适合新一代神威超级计算平台部署的并行BZIP2算法的设计与实现。通过利用新一代神威处理器独特的缓存模式,我们提出了针对不同场景的BZIP2应用程序的高度调优的多线程和多节点实现。此外,我们还提出了基于管理处理元素和计算处理元素的高效BZIP2库,支持常用的高级(解)压缩接口。测试结果表明,与顺序实现相比,我们的多线程实现在解压缩(压缩)方面实现了23.09(8.57)的最大加速。此外,当扩展到2048个进程时,多节点实现实现了50.81%(26.35%)的并行效率和16.6 GB/s (52.8 GB/s)的压缩(解压缩)峰值性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信