Victor Antônio Moreira de Faria, Marcílio Sousa da Rocha Freitas, André Luís Riqueira Brandão
{"title":"Reliability of Rack Columns Designed by the Direct Strength Method","authors":"Victor Antônio Moreira de Faria, Marcílio Sousa da Rocha Freitas, André Luís Riqueira Brandão","doi":"10.1080/10168664.2023.2258921","DOIUrl":null,"url":null,"abstract":"AbstractCold-formed rack profiles are produced mainly for use in industrial storage systems. Their complex geometry and the presence of hole patterns along their length make the strength prevision of these structural elements difficult. This article evaluates the safety presented in the design of rack columns by adaptations of the Direct Strength Method (DSM), the original formulation of which does not address perforations. The safety parameters used here are the reliability indexes, calculated by the First Order Second Moment (FOSM) method, used in the calibration of the AISI S100 current standard, the First Order Reliability Method (FORM) and Monte Carlo Simulation. Only methodologies that applied the reduced thickness method in cross-section modelling produce results close to the target reliability indexes suggested for cold-formed columns. The target indexes are met for all load combinations when only distortional buckling failure is considered. However, the DSM adaptations are still imprecise when considering failure with local buckling. New professional factors were calibrated for these cases, as the design using the current ϕ=0.85 does not meet the safety requirements.Keywords: industrial storage systemsrack columnsdirect strength methodstructural reliabilityreliability indexesresistance factors AcknowledgementsThis study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors are grateful to the Federal University of Ouro Preto (UFOP) and Professors Teoman Peköz and Miquel Casafont for their suggestions.Disclosure StatementNo potential conflict of interest was reported by the authors.Data Availability StatementThe data that support the findings of this study are available from the corresponding author, V.A.M. de Faria, upon reasonable request.","PeriodicalId":51281,"journal":{"name":"Structural Engineering International","volume":"1 6","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10168664.2023.2258921","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractCold-formed rack profiles are produced mainly for use in industrial storage systems. Their complex geometry and the presence of hole patterns along their length make the strength prevision of these structural elements difficult. This article evaluates the safety presented in the design of rack columns by adaptations of the Direct Strength Method (DSM), the original formulation of which does not address perforations. The safety parameters used here are the reliability indexes, calculated by the First Order Second Moment (FOSM) method, used in the calibration of the AISI S100 current standard, the First Order Reliability Method (FORM) and Monte Carlo Simulation. Only methodologies that applied the reduced thickness method in cross-section modelling produce results close to the target reliability indexes suggested for cold-formed columns. The target indexes are met for all load combinations when only distortional buckling failure is considered. However, the DSM adaptations are still imprecise when considering failure with local buckling. New professional factors were calibrated for these cases, as the design using the current ϕ=0.85 does not meet the safety requirements.Keywords: industrial storage systemsrack columnsdirect strength methodstructural reliabilityreliability indexesresistance factors AcknowledgementsThis study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors are grateful to the Federal University of Ouro Preto (UFOP) and Professors Teoman Peköz and Miquel Casafont for their suggestions.Disclosure StatementNo potential conflict of interest was reported by the authors.Data Availability StatementThe data that support the findings of this study are available from the corresponding author, V.A.M. de Faria, upon reasonable request.
期刊介绍:
The aim of the Association is to exchange knowledge and to advance the practice of structural engineering worldwide in the service of the profession and society.