{"title":"Infinite homotopy stable class for 4-manifolds with boundary","authors":"Anthony Conway, Diarmuid Crowley, Mark Powell","doi":"10.2140/pjm.2023.325.209","DOIUrl":null,"url":null,"abstract":"We show that for every odd prime $q$, there exists an infinite family $\\{M_i\\}_{i=1}^{\\infty}$ of topological 4-manifolds that are all stably homeomorphic to one another, all the manifolds $M_i$ have isometric rank one equivariant intersection pairings and boundary $L(2q, 1) # (S^1 \\times S^2)$, but they are pairwise not homotopy equivalent via any homotopy equivalence that restricts to a homotopy equivalence of the boundary.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/pjm.2023.325.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that for every odd prime $q$, there exists an infinite family $\{M_i\}_{i=1}^{\infty}$ of topological 4-manifolds that are all stably homeomorphic to one another, all the manifolds $M_i$ have isometric rank one equivariant intersection pairings and boundary $L(2q, 1) # (S^1 \times S^2)$, but they are pairwise not homotopy equivalent via any homotopy equivalence that restricts to a homotopy equivalence of the boundary.