Conservative Fourier spectral method for a class of modified Zakharov system with high-order space fractional quantum correction

IF 2.3 Q1 MATHEMATICS
Tao Guo, Aiguo Xiao, Junjie Wang, Xueyang Li
{"title":"Conservative Fourier spectral method for a class of modified Zakharov system with high-order space fractional quantum correction","authors":"Tao Guo, Aiguo Xiao, Junjie Wang, Xueyang Li","doi":"10.1186/s13662-023-03790-4","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider the Fourier spectral method and numerical investigation for a class of modified Zakharov system with high-order space fractional quantum correction. First, the numerical scheme of the system is developed with periodic boundary condition based on the Crank–Nicolson/leap-frog methods in time and the Fourier spectral method in space. Moreover, it is shown that the scheme preserves simultaneously mass and energy conservation laws. Second, we analyze stability and convergence of the numerical scheme. Last, the numerical experiments are given, and the results show the correctness of theoretical results and the efficiency of the conservative scheme.","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":"44 13","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in continuous and discrete models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13662-023-03790-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we consider the Fourier spectral method and numerical investigation for a class of modified Zakharov system with high-order space fractional quantum correction. First, the numerical scheme of the system is developed with periodic boundary condition based on the Crank–Nicolson/leap-frog methods in time and the Fourier spectral method in space. Moreover, it is shown that the scheme preserves simultaneously mass and energy conservation laws. Second, we analyze stability and convergence of the numerical scheme. Last, the numerical experiments are given, and the results show the correctness of theoretical results and the efficiency of the conservative scheme.

Abstract Image

一类具有高阶空间分数量子校正的修正Zakharov系统的保守傅里叶谱方法
本文研究了一类具有高阶空间分数阶量子校正的修正Zakharov系统的傅里叶谱方法和数值研究。首先,基于时间上的Crank-Nicolson /leap-frog方法和空间上的傅立叶谱方法,在周期边界条件下建立了系统的数值格式。此外,还证明了该方案同时保持了质量和能量守恒定律。其次,分析了数值格式的稳定性和收敛性。最后进行了数值实验,结果表明了理论结果的正确性和保守格式的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信