Maojun Li, Yajie Chen, Xiaoyang Jiang, Xujing Yang
{"title":"Surface damage characteristics and identification based on acoustic emission in diamond point grinding carbon/carbon ceramic matrix composites","authors":"Maojun Li, Yajie Chen, Xiaoyang Jiang, Xujing Yang","doi":"10.1177/09544054231209792","DOIUrl":null,"url":null,"abstract":"This study mainly investigated the effect of machining parameters on acoustic emission (AE) characteristics in grinding three-dimensional carbon/carbon ceramic matrix composites with superabrasive diamond grinding points. Signal processing techniques including fast Fourier transform (FFT) and short-time Fourier transform (SWFT) were applied to evaluate frequency features of AE signals. The RMS values were used as an indicator to detect grinding energy releasing characteristics. Results indicated that grinding speed and grinding depth were the main influencing factors on RMS values, while feed speed presented limited effects. The maximum undeformed chip thickness h max and active grits number were two key factors affecting RMS variation of the AE signals, which corresponded to the intensity of single AE source and the number of total AE ones, respectively. The material removal mechanisms were studied via detailed SEM micrographs of machined surfaces, revealing that fiber fracture and debonding were the main material removal modes in point grinding carbon/carbon composites. The material removal mode can be possibly identified from the frequency of AE signal, as the band of 12–35 kHz mainly corresponded to fiber fracture, 35–70 kHz referred to debonding between the fiber and matrix, 70–90 kHz indicated the frictions, and the fourth band (90–120 kHz) was related to the matrix cracks.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"29 3","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544054231209792","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This study mainly investigated the effect of machining parameters on acoustic emission (AE) characteristics in grinding three-dimensional carbon/carbon ceramic matrix composites with superabrasive diamond grinding points. Signal processing techniques including fast Fourier transform (FFT) and short-time Fourier transform (SWFT) were applied to evaluate frequency features of AE signals. The RMS values were used as an indicator to detect grinding energy releasing characteristics. Results indicated that grinding speed and grinding depth were the main influencing factors on RMS values, while feed speed presented limited effects. The maximum undeformed chip thickness h max and active grits number were two key factors affecting RMS variation of the AE signals, which corresponded to the intensity of single AE source and the number of total AE ones, respectively. The material removal mechanisms were studied via detailed SEM micrographs of machined surfaces, revealing that fiber fracture and debonding were the main material removal modes in point grinding carbon/carbon composites. The material removal mode can be possibly identified from the frequency of AE signal, as the band of 12–35 kHz mainly corresponded to fiber fracture, 35–70 kHz referred to debonding between the fiber and matrix, 70–90 kHz indicated the frictions, and the fourth band (90–120 kHz) was related to the matrix cracks.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.