{"title":"Cooling-assist friction stir welding: A case study on AA6068 aluminum alloy and copper joint","authors":"Hamed Aghajani Derazkola, Majid Elyasi","doi":"10.1177/09544054231209779","DOIUrl":null,"url":null,"abstract":"This study evaluates the impact of cooling-assist friction stir welding (CA-FSW) tool rotational and traverse velocities on the bonding quality of Al-Cu-Mg and copper lap joints. A modified computational fluid dynamics (CFD) technique analyzes heat generation and distribution during dissimilar CA-FSW joints between AA6068 alloy and copper. The relationship between CA-FSW tool velocities and metallurgical properties of the final joint is assessed. Simulation results provide insights into metallurgical phenomena during the CA-FSW process. Findings reveal greater plastic deformation and heat generation on the AA6068 aluminum alloy side due to raw material placement, resulting in more significant microstructure changes in AA6068 aluminum alloy compared to copper. Increased heat generation leads to higher copper-rich intermetallic compound (IMC) formation, resulting in increased hardness of the stir zone at the base metals’ interface.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"34 9","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544054231209779","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates the impact of cooling-assist friction stir welding (CA-FSW) tool rotational and traverse velocities on the bonding quality of Al-Cu-Mg and copper lap joints. A modified computational fluid dynamics (CFD) technique analyzes heat generation and distribution during dissimilar CA-FSW joints between AA6068 alloy and copper. The relationship between CA-FSW tool velocities and metallurgical properties of the final joint is assessed. Simulation results provide insights into metallurgical phenomena during the CA-FSW process. Findings reveal greater plastic deformation and heat generation on the AA6068 aluminum alloy side due to raw material placement, resulting in more significant microstructure changes in AA6068 aluminum alloy compared to copper. Increased heat generation leads to higher copper-rich intermetallic compound (IMC) formation, resulting in increased hardness of the stir zone at the base metals’ interface.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.