{"title":"Approximate option pricing under a two-factor Heston–Kou stochastic volatility model","authors":"Youssef El-Khatib, Zororo S. Makumbe, Josep Vives","doi":"10.1007/s10287-023-00486-8","DOIUrl":null,"url":null,"abstract":"Abstract Under a two-factor stochastic volatility jump (2FSVJ) model we obtain an exact decomposition formula for a plain vanilla option price and a second-order approximation of this formula, using Itô calculus techniques. The 2FSVJ model is a generalization of several models described in the literature such as Heston (Rev Financ Stud 6(2):327–343, 1993); Bates (Rev Financ Stud 9(1):69–107, 1996); Kou (Manag Sci 48(8):1086–1101, 2002); Christoffersen et al. (Manag Sci 55(12):1914–1932, 2009) models. Thus, the aim of this study is to extend some approximate pricing formulas described in the literature, like formulas in Alòs (Finance Stoch 16(3):403–422, 2012); Merino et al. (Int J Theor Appl Finance 21(08):1850052, 2018); Gulisashvili et al. (J Comput Finance 24(1), 2020), to pricing under the more general 2FSVJ model. Moreover, we provide numerical illustrations of our pricing method and its accuracy and computational advantage under double exponential and log-normal jumps. Numerically, our pricing method performs very well compared to the Fourier integral method. The performance is ideal for out-of-the-money options as well as for short maturities.","PeriodicalId":46743,"journal":{"name":"Computational Management Science","volume":"44 4","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Management Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10287-023-00486-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Under a two-factor stochastic volatility jump (2FSVJ) model we obtain an exact decomposition formula for a plain vanilla option price and a second-order approximation of this formula, using Itô calculus techniques. The 2FSVJ model is a generalization of several models described in the literature such as Heston (Rev Financ Stud 6(2):327–343, 1993); Bates (Rev Financ Stud 9(1):69–107, 1996); Kou (Manag Sci 48(8):1086–1101, 2002); Christoffersen et al. (Manag Sci 55(12):1914–1932, 2009) models. Thus, the aim of this study is to extend some approximate pricing formulas described in the literature, like formulas in Alòs (Finance Stoch 16(3):403–422, 2012); Merino et al. (Int J Theor Appl Finance 21(08):1850052, 2018); Gulisashvili et al. (J Comput Finance 24(1), 2020), to pricing under the more general 2FSVJ model. Moreover, we provide numerical illustrations of our pricing method and its accuracy and computational advantage under double exponential and log-normal jumps. Numerically, our pricing method performs very well compared to the Fourier integral method. The performance is ideal for out-of-the-money options as well as for short maturities.
期刊介绍:
Computational Management Science (CMS) is an international journal focusing on all computational aspects of management science. These include theoretical and empirical analysis of computational models; computational statistics; analysis and applications of constrained, unconstrained, robust, stochastic and combinatorial optimisation algorithms; dynamic models, such as dynamic programming and decision trees; new search tools and algorithms for global optimisation, modelling, learning and forecasting; models and tools of knowledge acquisition.
The emphasis on computational paradigms is an intended feature of CMS, distinguishing it from more classical operations research journals.
Officially cited as: Comput Manag Sci