{"title":"Semi-tensor product-based one-bit compressed sensing","authors":"Jingyao Hou, Xinling Liu","doi":"10.1186/s13634-023-01071-6","DOIUrl":null,"url":null,"abstract":"Abstract The area of one-bit compressed sensing (1-bit CS) focuses on the recovery of sparse signals from binary measurements. Over the past decade, this field has witnessed the emergence of well-developed theories. However, most of the existing literature is confined to fully random measurement matrices, like random Gaussian and random sub-Gaussian measurements. This limitation often results in high generation and storage costs. This paper aims to apply semi-tensor product-based measurements to 1-bit CS. By utilizing the semi-tensor product, this proposed method can compress high-dimensional signals using lower-dimensional measurement matrices, thereby reducing the cost of generating and storing fully random measurement matrices. We propose a regularized model for this problem that has a closed-form solution. Theoretically, we demonstrate that the solution provides an approximate estimate of the underlying signal with upper bounds on recovery error. Empirically, we conduct a series of experiments on both synthetic and real-world data to demonstrate the proposed method’s ability to utilize a lower-dimensional measurement matrix for signal compression and reconstruction with enhanced flexibility, resulting in improved recovery accuracy.","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13634-023-01071-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The area of one-bit compressed sensing (1-bit CS) focuses on the recovery of sparse signals from binary measurements. Over the past decade, this field has witnessed the emergence of well-developed theories. However, most of the existing literature is confined to fully random measurement matrices, like random Gaussian and random sub-Gaussian measurements. This limitation often results in high generation and storage costs. This paper aims to apply semi-tensor product-based measurements to 1-bit CS. By utilizing the semi-tensor product, this proposed method can compress high-dimensional signals using lower-dimensional measurement matrices, thereby reducing the cost of generating and storing fully random measurement matrices. We propose a regularized model for this problem that has a closed-form solution. Theoretically, we demonstrate that the solution provides an approximate estimate of the underlying signal with upper bounds on recovery error. Empirically, we conduct a series of experiments on both synthetic and real-world data to demonstrate the proposed method’s ability to utilize a lower-dimensional measurement matrix for signal compression and reconstruction with enhanced flexibility, resulting in improved recovery accuracy.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.