Changshuai Shi, Haoyang Zeng, Xiaohua Zhu, Ao Wang
{"title":"Study on forming process of equal wall thickness metal spiral pipe by single screw pump","authors":"Changshuai Shi, Haoyang Zeng, Xiaohua Zhu, Ao Wang","doi":"10.1177/09544054231203736","DOIUrl":null,"url":null,"abstract":"To solve the problems of poor high temperature resistance of conventional screw pump stator and difficult machining of screw pump stator with equal wall thickness, this paper created a finite element model of equal wall thickness metal spiral pipe for single screw sump with 42CrMo based on tube hydroforming (THF). In this paper, the forming effects of different processes were evaluated by analysing the average pitch, wall thickness thinning rate and inner contour accuracy. Due to the particularity of design section and irregular plastic flow of material, the wall thickness of internal high pressure forming decreases seriously; on the other hand, because the diameter of the designed section is relatively large, the minimum ratio of D 2 to D min is 1.12, which shows that wrinkles appear in external high pressure forming. As a result, based on the problems of internal and external high pressure forming, a coupling forming process was proposed. The results show that different parameters of coupling forming have little effect on the average pitch of metal spiral tube, and its maximum deviation is 1.08%; while thickness reduction ratio is proportional to initial diameter and thickness. Besides, when the liquid pressure is 350 MPa, the diameter is 60 mm and the wall thickness is 7.5 mm, the contour matching degree is higher; but the material accumulation and wrinkling will happen when the pipe diameter greater than 60 mm.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"33 4","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544054231203736","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problems of poor high temperature resistance of conventional screw pump stator and difficult machining of screw pump stator with equal wall thickness, this paper created a finite element model of equal wall thickness metal spiral pipe for single screw sump with 42CrMo based on tube hydroforming (THF). In this paper, the forming effects of different processes were evaluated by analysing the average pitch, wall thickness thinning rate and inner contour accuracy. Due to the particularity of design section and irregular plastic flow of material, the wall thickness of internal high pressure forming decreases seriously; on the other hand, because the diameter of the designed section is relatively large, the minimum ratio of D 2 to D min is 1.12, which shows that wrinkles appear in external high pressure forming. As a result, based on the problems of internal and external high pressure forming, a coupling forming process was proposed. The results show that different parameters of coupling forming have little effect on the average pitch of metal spiral tube, and its maximum deviation is 1.08%; while thickness reduction ratio is proportional to initial diameter and thickness. Besides, when the liquid pressure is 350 MPa, the diameter is 60 mm and the wall thickness is 7.5 mm, the contour matching degree is higher; but the material accumulation and wrinkling will happen when the pipe diameter greater than 60 mm.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.