{"title":"IoT device type identification using training deep quantum neural networks optimized with a chimp optimization algorithm for enhancing IoT security","authors":"C.P. Shirley, Jaydip Kumar, Kantilal Pitambar Rane, Narendra Kumar, Deevi Radha Rani, Kuntamukkula Harshitha, Mohit Tiwari","doi":"10.3233/jhs-230028","DOIUrl":null,"url":null,"abstract":"IoT networks can be defined as groups of physically connected things and devices that can connect to the Internet and exchange data with one another. Since enabling an increasing number of internets of things devices to connect with their networks, organizations have become more vulnerable to safety issues and attacks. A major drawback of previous research is that it can find out prior seen types only, also any new device types are considered anomalous. In this manuscript, IoT device type detection utilizing Training deep quantum neural networks optimized with a Chimp optimization algorithm for enhancing IOT security (IOT-DTI-TDQNN-COA-ES) is proposed. The proposed method entails three phases namely data collection, feature extraction and detection. For Data collection phase, real network traffic dataset from different IoT device types are collected. For feature mining phase, the internet traffic features are extracted through automated building extraction (ABE) method. IoT device type identification phase, Training deep quantum neural networks (TDQNN) optimized with Chimp optimization algorithm (COA) is utilized to detect the category of IoT devices as known and unknown device. IoT network is implemented in Python. Then the simulation performance of the proposed IOT-DTI-TDQNN-COA-ES method attains higher accuracy as26.82% and 23.48% respectively, when compared with the existing methods.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"3 21","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jhs-230028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
IoT networks can be defined as groups of physically connected things and devices that can connect to the Internet and exchange data with one another. Since enabling an increasing number of internets of things devices to connect with their networks, organizations have become more vulnerable to safety issues and attacks. A major drawback of previous research is that it can find out prior seen types only, also any new device types are considered anomalous. In this manuscript, IoT device type detection utilizing Training deep quantum neural networks optimized with a Chimp optimization algorithm for enhancing IOT security (IOT-DTI-TDQNN-COA-ES) is proposed. The proposed method entails three phases namely data collection, feature extraction and detection. For Data collection phase, real network traffic dataset from different IoT device types are collected. For feature mining phase, the internet traffic features are extracted through automated building extraction (ABE) method. IoT device type identification phase, Training deep quantum neural networks (TDQNN) optimized with Chimp optimization algorithm (COA) is utilized to detect the category of IoT devices as known and unknown device. IoT network is implemented in Python. Then the simulation performance of the proposed IOT-DTI-TDQNN-COA-ES method attains higher accuracy as26.82% and 23.48% respectively, when compared with the existing methods.
期刊介绍:
The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge.
The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity.
The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.