Synthesis and Application of MnO-Fe2O3 Nanocomposites for the Removal of 137Cs and 60Co Radionuclides from Artificial Radioactive Aqueous Waste

IF 2.8 Q2 ENGINEERING, CHEMICAL
Hosam M. Saleh, Hazem H. Mahmoud, Refaat F. Aglan, Mohamed M. Shehata
{"title":"Synthesis and Application of MnO-Fe2O3 Nanocomposites for the Removal of 137Cs and 60Co Radionuclides from Artificial Radioactive Aqueous Waste","authors":"Hosam M. Saleh, Hazem H. Mahmoud, Refaat F. Aglan, Mohamed M. Shehata","doi":"10.3390/chemengineering7060106","DOIUrl":null,"url":null,"abstract":"For innovative application in wastewater treatment techniques, MnO-Fe2O3 nanocomposites were successfully synthesized using the sol–gel auto-combustion method at different temperatures for the adsorption of 137Cs and 60Co radionuclides from aqueous solution. The characterization of these nanocomposites was carried out through FT-IR, SEM-EDX, and X-ray diffraction. These nanocomposites were employed as adsorbent materials for the removal of 137Cs and 60Co radionuclides from simulated radioactive waste solutions. The study involved a series of experiments aiming to demonstrate the MnO-Fe2O3 nanoparticles’ exceptional adsorption potential concerning 137Cs and 60Co. Additionally, the investigation delved into how variations in temperature, dose amount, contact time, and pH value influence the adsorption dynamics. Due to their high specific surface area, the synthesized MnO-Fe2O3 nanoparticles had high adsorption capacity of more than 60% and 90% for 137Cs and 60Co, respectively. By investigation of kinetics and adsorption isotherms, pseudo-second-order reaction and the Langmuir model turned out to fit well for the adsorption of 137Cs and 60Co onto the MnO-Fe2O3 nanocomposites. Moreover, a thermodynamic analysis revealed that the adsorption process was spontaneous for both target metals and the adsorption of 60Co was endothermic, whereas the adsorption of 137Cs was exothermic.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":"8 24","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7060106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For innovative application in wastewater treatment techniques, MnO-Fe2O3 nanocomposites were successfully synthesized using the sol–gel auto-combustion method at different temperatures for the adsorption of 137Cs and 60Co radionuclides from aqueous solution. The characterization of these nanocomposites was carried out through FT-IR, SEM-EDX, and X-ray diffraction. These nanocomposites were employed as adsorbent materials for the removal of 137Cs and 60Co radionuclides from simulated radioactive waste solutions. The study involved a series of experiments aiming to demonstrate the MnO-Fe2O3 nanoparticles’ exceptional adsorption potential concerning 137Cs and 60Co. Additionally, the investigation delved into how variations in temperature, dose amount, contact time, and pH value influence the adsorption dynamics. Due to their high specific surface area, the synthesized MnO-Fe2O3 nanoparticles had high adsorption capacity of more than 60% and 90% for 137Cs and 60Co, respectively. By investigation of kinetics and adsorption isotherms, pseudo-second-order reaction and the Langmuir model turned out to fit well for the adsorption of 137Cs and 60Co onto the MnO-Fe2O3 nanocomposites. Moreover, a thermodynamic analysis revealed that the adsorption process was spontaneous for both target metals and the adsorption of 60Co was endothermic, whereas the adsorption of 137Cs was exothermic.
MnO-Fe2O3纳米复合材料的合成及其去除水中137Cs和60Co放射性核素的应用
为了创新废水处理技术的应用,在不同温度下,采用溶胶-凝胶自燃烧法成功合成了MnO-Fe2O3纳米复合材料,用于吸附水溶液中的137Cs和60Co放射性核素。通过FT-IR, SEM-EDX和x射线衍射对这些纳米复合材料进行了表征。利用这些纳米复合材料作为吸附材料,从模拟放射性废物溶液中去除137Cs和60Co放射性核素。该研究通过一系列的实验来证明纳米二氧化锰- fe2o3对137Cs和60Co的特殊吸附潜力。此外,研究了温度、剂量、接触时间和pH值对吸附动力学的影响。由于具有较高的比表面积,合成的MnO-Fe2O3纳米颗粒对137Cs和60Co的吸附量分别达到60%和90%以上。通过动力学和吸附等温线的研究,表明MnO-Fe2O3纳米复合材料对137Cs和60Co的吸附符合拟二级反应和Langmuir模型。此外,热力学分析表明,对两种目标金属的吸附过程都是自发的,60Co的吸附是吸热的,而137Cs的吸附是放热的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemEngineering
ChemEngineering Engineering-Engineering (all)
CiteScore
4.00
自引率
4.00%
发文量
88
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信