Perturbation Theory for Second Order Elliptic Operators with BMO Antisymmetric Part

IF 0.8 Q2 MATHEMATICS
Martin Dindoš, Erik Sätterqvist, Martin Ulmer
{"title":"Perturbation Theory for Second Order Elliptic Operators with BMO Antisymmetric Part","authors":"Martin Dindoš, Erik Sätterqvist, Martin Ulmer","doi":"10.1007/s10013-023-00653-z","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper we study perturbation theory for the $$L^p$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math> Dirichlet problem on bounded chord arc domains for elliptic operators in divergence form with potentially unbounded antisymmetric part in BMO. Specifically, given elliptic operators $$L_0 = \\text {div}(A_0\\nabla )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mtext>div</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mi>∇</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and $$L_1 = \\text {div}(A_1\\nabla )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mtext>div</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>∇</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> such that the $$L^p$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math> Dirichlet problem for $$L_0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> is solvable for some $$p&gt;1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> ; we show that if $$A_0 - A_1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>-</mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> </mml:math> satisfies certain Carleson condition, then the $$L^q$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> </mml:math> Dirichlet problem for $$L_1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> is solvable for some $$q \\ge p$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>≥</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:math> . Moreover if the Carleson norm is small then we may take $$q=p$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>=</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:math> . We use the approach first introduced in Fefferman–Kenig–Pipher ’91 on the unit ball, and build on Milakis–Pipher–Toro ’11 where the large norm case was shown for symmetric matrices on bounded chord arc domains. We then apply this to solve the $$L^p$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math> Dirichlet problem on a bounded Lipschitz domain for an operator $$L = \\text {div}(A\\nabla )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>=</mml:mo> <mml:mtext>div</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>A</mml:mi> <mml:mi>∇</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , where A satisfies a Carleson condition similar to the one assumed in Kenig–Pipher ’01 and Dindoš–Petermichl–Pipher ’07 but with unbounded antisymmetric part.","PeriodicalId":45919,"journal":{"name":"Vietnam Journal of Mathematics","volume":"128 S198","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10013-023-00653-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In the present paper we study perturbation theory for the $$L^p$$ L p Dirichlet problem on bounded chord arc domains for elliptic operators in divergence form with potentially unbounded antisymmetric part in BMO. Specifically, given elliptic operators $$L_0 = \text {div}(A_0\nabla )$$ L 0 = div ( A 0 ) and $$L_1 = \text {div}(A_1\nabla )$$ L 1 = div ( A 1 ) such that the $$L^p$$ L p Dirichlet problem for $$L_0$$ L 0 is solvable for some $$p>1$$ p > 1 ; we show that if $$A_0 - A_1$$ A 0 - A 1 satisfies certain Carleson condition, then the $$L^q$$ L q Dirichlet problem for $$L_1$$ L 1 is solvable for some $$q \ge p$$ q p . Moreover if the Carleson norm is small then we may take $$q=p$$ q = p . We use the approach first introduced in Fefferman–Kenig–Pipher ’91 on the unit ball, and build on Milakis–Pipher–Toro ’11 where the large norm case was shown for symmetric matrices on bounded chord arc domains. We then apply this to solve the $$L^p$$ L p Dirichlet problem on a bounded Lipschitz domain for an operator $$L = \text {div}(A\nabla )$$ L = div ( A ) , where A satisfies a Carleson condition similar to the one assumed in Kenig–Pipher ’01 and Dindoš–Petermichl–Pipher ’07 but with unbounded antisymmetric part.
具有BMO反对称部分的二阶椭圆算子的微扰理论
摘要本文研究了BMO中具有潜在无界反对称部分的发散型椭圆算子在有界弦弧域上的$$L^p$$ L p Dirichlet问题的摄动理论。具体地说,给定椭圆算子$$L_0 = \text {div}(A_0\nabla )$$ L 0 = div (A 0∇)和$$L_1 = \text {div}(A_1\nabla )$$ L 1 = div (A 1∇)使得$$L_0$$ L 0的$$L^p$$ L p Dirichlet问题对于某些$$p>1$$ p &gt是可解的;1;我们证明了如果$$A_0 - A_1$$ A 0 - a1满足一定的Carleson条件,那么$$L_1$$ L 1的$$L^q$$ L q Dirichlet问题对于某些$$q \ge p$$ q≥p是可解的。此外,如果Carleson范数很小,那么我们可以取$$q=p$$ q = p。我们使用fefferman - keng - piphher ' 91在单位球上首次引入的方法,并建立在Milakis-Pipher-Toro ' 11的基础上,其中展示了有界弦弧域上对称矩阵的大范数情况。然后,我们将此应用于求解算子$$L = \text {div}(A\nabla )$$ L = div (a∇)在有界Lipschitz域上的$$L^p$$ L p Dirichlet问题,其中a满足类似于kenig - piphher ' 01和Dindoš-Petermichl-Pipher ' 07中假设的Carleson条件,但具有无界反对称部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
52
期刊介绍: Vietnam Journal of Mathematics was originally founded in 1973 by the Vietnam Academy of Science and Technology and the Vietnam Mathematical Society. Published by Springer from 1997 to 2005 and since 2013, this quarterly journal is open to contributions from researchers from all over the world, where all submitted articles are peer-reviewed by experts worldwide. It aims to publish high-quality original research papers and review articles in all active areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信