Study on Flexural and Shear Behavior of UHPC Rhombus-Strip-Shaped Joint

IF 3.6 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Shuwen Deng, Banfu Yan, Lian Shen, Mingxin Qin, Yina Jia
{"title":"Study on Flexural and Shear Behavior of UHPC Rhombus-Strip-Shaped Joint","authors":"Shuwen Deng, Banfu Yan, Lian Shen, Mingxin Qin, Yina Jia","doi":"10.1186/s40069-023-00642-z","DOIUrl":null,"url":null,"abstract":"Abstract Accelerated bridge construction (ABC) has many advantages for bridge construction in modern society. While for ABC, the post-cast joint is always the weakest and most critical part. This paper presents a UHPC rhombus-strip-shaped (RSS) joint suitable for ABC. Several model tests were carried out to verify its resistance to flexural and shear. First, large-scale model tests are advanced to confirm its flexural properties. The results show that densified and welded joint interface rebars can significantly improve the ultimate bearing capacity and durability-based cracking stress of the RSS joint beams, and the ultimate bearing capacity can reach 90% of the complete beam. Then the shear-resistance tests were carried out. The results show that the UHPC RSS joint beam has excellent bending-shear mechanical properties and better ductility. Lastly, the ultimate flexural bearing capacity and shear-resistance capacity calculation methods were obtained.","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40069-023-00642-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Accelerated bridge construction (ABC) has many advantages for bridge construction in modern society. While for ABC, the post-cast joint is always the weakest and most critical part. This paper presents a UHPC rhombus-strip-shaped (RSS) joint suitable for ABC. Several model tests were carried out to verify its resistance to flexural and shear. First, large-scale model tests are advanced to confirm its flexural properties. The results show that densified and welded joint interface rebars can significantly improve the ultimate bearing capacity and durability-based cracking stress of the RSS joint beams, and the ultimate bearing capacity can reach 90% of the complete beam. Then the shear-resistance tests were carried out. The results show that the UHPC RSS joint beam has excellent bending-shear mechanical properties and better ductility. Lastly, the ultimate flexural bearing capacity and shear-resistance capacity calculation methods were obtained.

Abstract Image

UHPC菱形条形节点抗弯抗剪性能研究
摘要桥梁加速施工(ABC)在现代社会的桥梁建设中具有许多优势。而对于ABC来说,后浇接头一直是最薄弱也是最关键的部分。提出了一种适用于ABC的超高性能混凝土菱形-条形接头。进行了多次模型试验,验证了其抗弯、抗剪性能。首先,进行了大型模型试验,验证了其抗弯性能。结果表明:致密化和焊接连接界面钢筋能显著提高旋转导向连接梁的极限承载力和基于耐久性的开裂应力,其极限承载力可达到完整梁的90%;然后进行了抗剪试验。结果表明:超高混凝土旋转导向组合梁具有优异的弯剪力学性能和较好的延性。最后,给出了极限抗弯承载力和抗剪承载力的计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Concrete Structures and Materials
International Journal of Concrete Structures and Materials CONSTRUCTION & BUILDING TECHNOLOGY-ENGINEERING, CIVIL
CiteScore
6.30
自引率
5.90%
发文量
61
审稿时长
13 weeks
期刊介绍: The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on Properties and performance of concrete and concrete structures Advanced and improved experimental techniques Latest modelling methods Possible improvement and enhancement of concrete properties Structural and microstructural characterization Concrete applications Fiber reinforced concrete technology Concrete waste management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信