RESEARCH THE MODEL OF DETECTION POLYMORPHIC MALWARE BY THE CONVOLUTIONAL NEURAL NETWORK

Timur Jamgharyan
{"title":"RESEARCH THE MODEL OF DETECTION POLYMORPHIC MALWARE BY THE CONVOLUTIONAL NEURAL NETWORK","authors":"Timur Jamgharyan","doi":"10.56243/18294898-2023.3-10","DOIUrl":null,"url":null,"abstract":"The paper presents the results of research on the use of a convolutional neural network to detect polymorphic malware. The research was conducted on on basis of polymorphic software abc, cheeba, december_3, stasi, otario, dm, v-sign, tequila, flip. The generated of datasets for training a convolutional neural network was carried out using «state matrices» of various dimensions. The Fadeev-Leverrier method was used as a mathematical apparatus. The simulation of the developed software at different iterations and visualization of the results was carried out.","PeriodicalId":472444,"journal":{"name":"BULLETIN OF HIGH TECHNOLOGY","volume":"79 S49","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BULLETIN OF HIGH TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56243/18294898-2023.3-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the results of research on the use of a convolutional neural network to detect polymorphic malware. The research was conducted on on basis of polymorphic software abc, cheeba, december_3, stasi, otario, dm, v-sign, tequila, flip. The generated of datasets for training a convolutional neural network was carried out using «state matrices» of various dimensions. The Fadeev-Leverrier method was used as a mathematical apparatus. The simulation of the developed software at different iterations and visualization of the results was carried out.
研究了基于卷积神经网络的多态恶意软件检测模型
本文介绍了利用卷积神经网络检测多态恶意软件的研究结果。本研究采用abc、cheba、december_3、stasi、otario、dm、v-sign、tequila、flip等多态软件进行。用于训练卷积神经网络的数据集的生成使用各种维度的“状态矩阵”进行。采用了Fadeev-Leverrier方法作为数学工具。对所开发的软件进行了不同迭代的仿真,并对结果进行了可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信