{"title":"Fractional Order SQIRV Mathematical Model for Omicron Variant in the Caputo Sense","authors":"Pushpendra Kumar, S. Dickson, S. Padmasekaran","doi":"10.37256/cm.4420232373","DOIUrl":null,"url":null,"abstract":"In this paper, for the Omicron Variant, a mathematical model of epidemic SQIRV fractional order is constructed. This model's positivity and boundedness have been investigated and confirmed. In the sense of the Caputo derivative, this model's existence and uniqueness are investigated. The reproduction number $R_0$, which is used to determine whether or not the disease would spread further, is calculated to demonstrate that infection steady-state solutions are asymptotically stable. Different orders of fractional derivatives are used to explore the numerical simulations.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"15 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, for the Omicron Variant, a mathematical model of epidemic SQIRV fractional order is constructed. This model's positivity and boundedness have been investigated and confirmed. In the sense of the Caputo derivative, this model's existence and uniqueness are investigated. The reproduction number $R_0$, which is used to determine whether or not the disease would spread further, is calculated to demonstrate that infection steady-state solutions are asymptotically stable. Different orders of fractional derivatives are used to explore the numerical simulations.