On the quasi-ergodicity of absorbing Markov chains with unbounded transition densities, including random logistic maps with escape

IF 0.8 3区 数学 Q2 MATHEMATICS
MATHEUS M. CASTRO, VINCENT P. H. GOVERSE, JEROEN S. W. LAMB, MARTIN RASMUSSEN
{"title":"On the quasi-ergodicity of absorbing Markov chains with unbounded transition densities, including random logistic maps with escape","authors":"MATHEUS M. CASTRO, VINCENT P. H. GOVERSE, JEROEN S. W. LAMB, MARTIN RASMUSSEN","doi":"10.1017/etds.2023.69","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider absorbing Markov chains $X_n$ admitting a quasi-stationary measure $\\mu $ on M where the transition kernel ${\\mathcal P}$ admits an eigenfunction $0\\leq \\eta \\in L^1(M,\\mu )$ . We find conditions on the transition densities of ${\\mathcal P}$ with respect to $\\mu $ which ensure that $\\eta (x) \\mu (\\mathrm {d} x)$ is a quasi-ergodic measure for $X_n$ and that the Yaglom limit converges to the quasi-stationary measure $\\mu $ -almost surely. We apply this result to the random logistic map $X_{n+1} = \\omega _n X_n (1-X_n)$ absorbed at ${\\mathbb R} \\setminus [0,1],$ where $\\omega _n$ is an independent and identically distributed sequence of random variables uniformly distributed in $[a,b],$ for $1\\leq a <4$ and $b>4.$","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.69","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we consider absorbing Markov chains $X_n$ admitting a quasi-stationary measure $\mu $ on M where the transition kernel ${\mathcal P}$ admits an eigenfunction $0\leq \eta \in L^1(M,\mu )$ . We find conditions on the transition densities of ${\mathcal P}$ with respect to $\mu $ which ensure that $\eta (x) \mu (\mathrm {d} x)$ is a quasi-ergodic measure for $X_n$ and that the Yaglom limit converges to the quasi-stationary measure $\mu $ -almost surely. We apply this result to the random logistic map $X_{n+1} = \omega _n X_n (1-X_n)$ absorbed at ${\mathbb R} \setminus [0,1],$ where $\omega _n$ is an independent and identically distributed sequence of random variables uniformly distributed in $[a,b],$ for $1\leq a <4$ and $b>4.$
含逃逸随机逻辑映射的无界过渡密度吸收马尔可夫链的拟遍历性
摘要本文考虑M上吸收马尔可夫链$X_n$允许一个拟平稳测度$\mu $,其中转移核${\mathcal P}$允许一个本征函数$0\leq \eta \in L^1(M,\mu )$。我们找到了${\mathcal P}$相对于$\mu $的跃迁密度的条件,几乎可以肯定地保证$\eta (x) \mu (\mathrm {d} x)$是$X_n$的拟遍历测度,并且Yaglom极限收敛于拟平稳测度$\mu $。我们将这一结果应用于${\mathbb R} \setminus [0,1],$吸收的随机逻辑图$X_{n+1} = \omega _n X_n (1-X_n)$,其中$\omega _n$是一个独立的、同分布的随机变量序列,这些随机变量均匀分布在$1\leq a <4$和$[a,b],$中 $b>4.$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
11.10%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信